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Abstract. Recent ideas on modular localization in local quantum physics are used to clarify
the relation between on- and off-shell quantities in particle physics; in particular, the relation
between on-shell crossing symmetry and off-shell Einstein causality. Among the collateral results
of this new non-perturbative approach are profound relations between crossing symmetry of particle
physics and Hawking–Unruh-like thermal aspects (KMS property, entropy attached to horizons) of
quantum matter behind causal horizons, aspects which hitherto were exclusively related to Killing
horizons in curved spacetime rather than with localization aspects in Minkowski space particle
physics. The scope of this modular framework is amazingly wide and ranges from providing a
conceptual basis for the d = 1 + 1 bootstrap-formfactor programme for factorizable d = 1 + 1
models to a decomposition theory of quantum field theories in terms of a finite collection of unitarily
equivalent chiral conformal theories placed a specified relative position within a common Hilbert
space (in d = 1+1 a holographic relation and in higher dimensions more like a scanning). The new
framework gives a spacetime interpretation to the Zamolodchikov algebra and explains its thermal
aspects.

1. Introduction

Theoretical physicists, in contrast to mathematicians, rarely return to their old unsolved
problems; often they replace them by new inventions. The content of this paper on some
new concepts in particle physics does not follow this pattern. The old problems it addresses
and partially solves are those of the relation between off- and on-shell quantities (or between
fields and particles) and, in particular, of crossing symmetry in local quantum physics (LQP)‡.
A more restricted form of on-shell crossing symmetry also led to the invention of the dual
model and string theory, a line of development which we will not follow except for some
remarks in the last section.

The most prominent of the on-shell quantities is the S-matrix of a local quantum field
theory (QFT), whereas fields and more general operators are ‘off-shell’. The derivation of on-
shell quantities from LQP through the use of the rigorous LSZ scattering theory was one of the
high points of QFT of the 1960s. In the opposite direction the problem (‘the inverse problem of

† Present address: CBPF, Rua Dr Xavier Sigaud, 22290-180 Rio de Janeiro, Brazil.
‡ We will often use the name ‘local quantum physics’ instead of QFT [1], if we have in mind the physical principles
of QFT implemented by different concepts from those of the various quantization formalisms (canonical, quantization
via path integrals, etc) which most of the readers are familiar with from the various textbooks. To the extent that the
reader does not automatically identify QFT with those formalisms, he may continue to use the name QFT without
danger of misunderstanding.

0305-4470/00/295231+36$30.00 © 2000 IOP Publishing Ltd 5231
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QFT’) lay dormant for a long time. Recently, the adaptation of the Tomita–Takesaki modular
theory to wedge-localized algebras has suggested new methods to construct unique off-shell
local operator algebras from the scattering data in a quite interesting and novel way [21, 50].
Thus the inverse problem of QFT has a much better status than in quantum mechanics (QM).
To bring this into the open requires the introduction of a wealth of new concepts relevant to
particle physics, while maintaining all the principles of QFT.

In this paper we will have to study a new kind of operators which, as a result of their
weak semi-infinite (wedge-like) localization and their close relation to the S-matrix, are to be
considered as on-shell. These on-shell operators are essential for our new approach which
avoids pointlike fields at the beginning and rather starts with on-shell generators of wedge-
localized algebra which encode the structure of the S-matrix. Off-shell compactly localized
operators and local field generators are then obtained via intersections of wedge algebras.
Here and in the following the word localization region always stands for the causal completion
of a spacetime region; these are typically the regions which one obtains by intersecting
wedges.

Besides these two extremes there are intermediate possibilities where on-shell and off-
shell aspects appear together. The most prominent and useful mixed objects are bilinear
forms on scattering vector states, i.e. matrix elements of local operators A (either pointlike
fields or bounded operators localized in smaller than wedge regions) taken between incoming
and outgoing multiparticle scattering states (in terms of Feynman graphs, one leg is off-
shell):

out〈q1, . . . qn−1, qn |A|pn, pn−1, . . . p1〉in (1)

which we will call (generalized) formfactors, following the standard terminology of d = 1 + 1
factorizing models. These objects fulfil the important crossing symmetry which acts on the
on-shell momenta.

out 〈q1, . . . qn−1, qn |A|pn, pn−1, . . . p1〉in

= out
〈−p̄1,q1, . . . qn−1, qn |A|pn, pn−1, . . . p2

〉in
(2)

where the analytic continuation p → −p is carried out in the rapidity parametrization by
an iπ -shift: θ → θ + iπ , and the bar denotes the antiparticle. The difficulties in physical
interpretation of this relation (about which sufficiently general and rigorous information outside
of perturbation theory is scarce) reflects the lack in conceptual understanding. It is in a way
deeper than the TCP symmetry, a symmetry derived from causality which among other things
requires the existence of an antiparticle for each particle. In fact, the crossing transformation
is a kind of individual TCP transformation which affects only one particle at a time within
the multiparticle incoming ket configuration and carries it to the outgoing bra configuration
as an antiparticle. In spite of its name, it is not a quantum theoretical (Wigner) symmetry,
since that crossing process involves an on-shell analytic continuation p→−p. Together with
vacuum polarization, it belongs to the most characteristic aspects of QFT. Although its physical
meaning in terms of the basic principles of LQP remained vague, most physicists liked to view
it as a kind of on-shell imprint of Einstein causality, the latter being an off-shell concept.
One of the results of the new conceptual framework presented here is an interpretation of the
crossing property in terms of ‘wedge localization’ and the ensuing thermal Hawking–Unruh
properties. They are usually associated exclusively with black hole quantum physics, but,
in fact, turn out to be general properties of any local quantum description including particle
physics in Minkowski space. Although in constructive terms the control in passing from the on-
shell S-matrix-dominated aspects to the off-shell local quantum physics remains a formidable



New concepts in particle physics from solution of an old problem 5233

problem, it is easy to see that a local theory is (if it exists at all) uniquely determined in terms
of its on-shell ‘shadow’.

The S-matrix whose matrix elements result from the previous formula for A = 1, is the
observable of particle physics par excellence; it is totally intrinsic and independent of any
field coordinatizations, although in the LSZ theory it is calculated from specific fields. Strictly
speaking in high-energy physics only (inclusive) cross sections and not amplitudes are directly
measured; a fact which is especially important if interactions between zero-mass particles leads
to infrared problems.

The reason why most theoretical methods in particle physics do not aim directly at the
S-matrix is that most of our physical intuition about causality and charge flows in spacetime
is based on (off-shell) local fields or local observables. The new on-shell wedge-algebra
generators introduced in this paper are somewhat hidden and, in particular, are not obtainable
by Lagrangian or more generally by any kind of quantization approach†. Although their role
in general QFT is only at the initial stages of being understood, there is already a very good
spacetime comprehension in the class of factorizing d = 1 + 1 models [21].

The old problems on which there has been significant recent progress can be summarized
in terms of the following questions.

• Does a physically admissible S-matrix fulfilling unitarity, crossing symmetry and certain
analytic properties (needed in its formulation), have an underlying unique local QFT?
This one may call the inverse problem of QFT associated with scattering. It is a problem
of particular interest to take note not only of the well known fact that fields and local
observable lead to scattering, but also that local equivalence classes of fields‡ or nets of
local observables are, in turn, determined by particle scattering data.

• Is there a constructive procedure in which, similar to the d = 1 + 1 bootstrap-formfactor
programme for factorizing d = 1 + 1 models (which, in fact, reappears as a special case),
the S-matrix and the generalized formfactors enter as important constructive elements
in order to obtain off-shell objects such as fields or local observables? In particular,
can one formulate such a constructive approach in a conceptually intrinsic manner, i.e.
without any quantization parallelism to classical field theory and without the use of field
coordinatizations and short-distance divergence problems? This could be of tremendous
practical importance.

The progress obtained on both questions by the modular method will be presented in the
following.

In order to better understand what is meant by the word ‘old’ in the title of this paper,
it is very instructive to pause and take stock of some past achievements and failures in an S-
matrix approach to particle physics. Already as long ago as 1946 Heisenberg [8] proposed to do
particle physics in a pureS-matrix setting in order to avoid the at that time nonsensical aspects of
short-distance divergences in QFT. His requirements of unitarity, Poincaré invariance and some
rudimentary aspects of cluster decomposition properties turned out to be much too general in
order to be useful. A second attempt with the full backing of renormalized perturbation theory
was launched in the early 1960s [9]. Part of the motivation was similar to the previous one.
Although renormalization theory meanwhile allowed one to extract a class of perturbatively
finite QFTs, the formally infinite intermediate steps and the not entirely natural but rather

† Any approach which leads to an explicit solution and not just to formal representations as, for example, Euclidean
functional integral representations would of course present all properties. However, the Lagrangian approach only
achieves the latter.
‡ That an S-matrix cannot determine individual fields had been known since the late 1950s.
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technical looking division into renormalizable/non-renormalizable models nourished the hope
that those discomforting features would disappear in a pure S-matrix approach [11]. The
second more pragmatic motivation was the idea that the dispersion theoretical research of
the 1950s could be extended into a computational scheme for strong interactions within an
S-matrix setting. Since the physical principles of the S-matrix approach cannot be dealt with
directly but rather require an operator or functional formalism, several ideas which could not
be motivated through QFT (in fact, they are not true in perturbative QFT) had to be added. The
most prominent ones were on-shell spectral representations as the Mandelstam representation
and a strengthened form of crossing called duality. The first one served to specify analyticity
domains and the second implemented the purely phenomenological idea of saturating the
coexistence of charges in the different crossed channels already by disregarding cuts and only
taking one-particle poles into account (‘nuclear democracy’, ‘Reggeization’). I believe that
these added requirements which made heavy use of analyticity contributed to the failure of the
programme. It did not even achieve the reproduction of those perturbative S-matrices which
via LSZ scattering theory were obtained from the Feynman perturbation theory of time-ordered
functions. What was left over from this programme got swept aside by the ascending gauge
theory at the beginning of the 1970s.

For the purpose of a good understanding of the content of this paper it is very helpful
to localize the cause of the failure of the S-matrix bootstrap programme. I think I will be in
agreement with most of my colleagues who followed these developments or later read about
them that free-floating (and often ill-defined) analyticity requirements are too fine instruments
in order to harmonize with physical intuition. Only analytic properties which appear directly
in the formulation of physical concepts are useful for the construction of theories. This is
best illustrated by two examples. The x-space analyticity of correlation functions in QFT
which was discovered by Wightman [5] is equivalent to the spectral, covariance and locality
properties of the operator theory. On the other hand, the dispersion relations, even if restricted
to the simplest case of forward scattering, involve analyticity properties which arise from
a quite complicated interplay between the off-shell causality of retarded functions with on-
shell spectrum properties [6]. Such non-constructive analytic properties are still useful for
experimentally verifying particular consequences of causality and they also have their merits
in the study of possible non-perturbative high-energy bounds on cross sections, but they have
no natural role in an actual construction.

Only very few people took note of the fact that the bootstrap programme finally worked
in the more limited context of d = 1 + 1 integrable models; it was too far away from
a ‘theory of everything’ which was on the minds of the ambitious protagonists of the
four-dimensional bootstrap which finally ended in failure. The modest two-dimensional
programme led to a nice classification of families of factorizing elastic S-matrices (thus
showing that the idea of the bootstrap being a theory of everything (TOE) was incorrect)
and it also set the path for the construction of associated QFT models via a formfactor
programme. A side result of the S-matrix research in d = 1 + 1 was the discovery
of an on-shell perturbation theory which, if specialized to on-shell tree graphs without
particle creation† allowed one to show the absence of creation of the on-shell one-loop
approximation [10]. Apparently, the extension to multi-loops was never elaborated in sufficient
generality. The very existence of these formulae shows that a finite on-shell approach which
avoids the characteristic off-shell short-distance problems of QFT is more than just a nice
dream.

† The absence of particle creation is not an issue which is evident on the level of tree graphs since it only happens
on-shell. Properties which are only valid on-shell are too subtle to be seen by inspection of Feynman diagrams.



New concepts in particle physics from solution of an old problem 5235

The present line of research takes off directly where the original programme failed. It
removes the unfortunate TOE ideology† from the S-matrix bootstrap and incorporates the latter
with the help of modular theory into the QFT structure of wedge algebras. This return into QFT
is based on the fact that the S-matrix has in addition to the large time scattering interpretation
(well known from the LSZ theory) another little known aspect, namely it is the relative modular
invariant between the wedge algebra of incoming free fields and that of the actual interacting
Heisenberg operators. Whereas the scattering aspect also applies to QM, the modular role is
totally characteristic for local quantum physics. Having established a direct modular relation
between the S-matrix and the wedge algebra, the old S-matrix formalism becomes enriched
with new physical concepts and mathematical tools. In particular, the thermal aspects of the
wedge algebra (the Hawking–Unruh temperature of matter behind a Rindler horizon) becomes
inexorably tied up with the crossing symmetry of particle physics. A pivotal role in the
linkage of the S-matrix with the wedge algebras is played by special wedge-localized operators
which applied to the vacuum create one-particle states without the usually associated cloud of
particle–antiparticles well known from vacuum polarization phenomenon. These polarization-
free generators (PFGs) cannot exist for spacetime localization regions whose causal completion
is smaller than a wedge, unless the theory has no interactions, in other words, the wedge region
is the smallest causally complete region for which PFGs are compatible with the presence of
interactions.

The new framework shares with the old S-matrix bootstrap programme (and with string
theory) the absence of any ultraviolet problems since it uses no coordinatizations in terms of
pointlike fields. Whether a theory exists or not is not decided by the short-distance singularities
of some field coordinates in terms of which the Lagrangian quantization happened to be done,
but rather depends on the non-triviality of the intersection structure of wedge algebras. If
intersections representing double-cone algebras contain more operators than just multiples of
the identity, the theory is non-trivial in the sense that it possesses a non-trivial net for small
localization regions and not just for wedge regions. This avoidance of particular pointlike
fields and their short-distance problems was the main dream and the raison d’être of the
S-matrix bootstrap. It is fully realized in the new approach by the use of the field-coordinate-
independent algebraic formulation of QFT (AQFT). The intention of the S-matrix protagonists
to abandon fields was reasonable, but unfortunately they thought that they also should abandon
the principle of locality.

The philosophy that the S-matrix has nothing to do with localization and locality was also
not quite right, as the relation to wedge-localized algebras shows. Since from the net of wedge
algebras one can obtain the algebras of compact regions by intersections, all of local quantum
physics is in principle determined by the S-matrix. An AQFT for a given S-matrix turns out
to be uniquely determined and it is believed that if S is admissible in the old sense (unitary,
crossing symmetric + associated analyticity), the net of wedge algebras also exists and leads
to the required non-trivial intersections. For d = 1 + 1 factorizing S-matrices the formfactor
programme goes a long way towards proving this conjecture.

After having outlined our physical motivation and the position of the new concepts with
respect to older ideas, we now briefly mention our main mathematical tool which will be used
for problems of (quantum) localization: (Tomita’s) modular theory of von Neumann algebras‡.

† ‘Theories of everything’ seem to also be the favourite pastime of post-S-matrix physicists. The underlying idea
that certain principles allow for only one solution usually originates in connection with nonlinear structures for which
initially no solution is known and ends with too many solutions, thus contradicting the idea of a TOE.
‡ Special aspects (the thermal KMS characterization) of Tomita’s mathematical modular theory were discovered by
physicists in connection with the quantum statistics of Fermi/Bose systems formulated directly in the infinite-volume
limit when the Gibbs formulation breaks down [1].
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These concepts, which for the first time clarified the on/off-shell relation and, in particular,
the spacetime interpretation of on-shell crossing symmetry, were not available at the time of
the S-matrix bootstrap of the 1960. In a seminal paper [12] the connection of wedge-localized
algebras with modular theory was established for the first time. The present approach may be
considered as the inverse of the Bisognano–Wichmann theorem. Instead of extracting a deep
mathematical property from the AQFT of wedge algebras, we are using this property together
with the modular role of the S-matrix for the construction of QFTs via wedge algebras. The
main new mathematical tool is briefly described in an appendix, a more detailed account can
be found in [2].

The ideas of AQFT used in this paper are not as well known as their importance would
suggest. Perhaps this is due to the fact that most particle physicists consider QFT as a basically
settled issue with only some nasty technical problems remaining. We will demonstrate in this
paper that such a view is quite premature and unrealistic.

We have organized this paper as follows. The next section reviews and illustrates the field-
coordinate-free approach for theories without interactions and for an interacting d = 1 + 1
factorizing model. In the latter case the Zamolodchikov–Faddeev (ZF) algebra emerges in a
natural way without having been put in [21], and the hitherto formal ZF operators acquire for
the first time a spacetime interpretation in connection with the new PFG generators of wedge
algebras. The presentation of these polarization-free wedge generators is extended to systems
which are not factorizing (i.e. to theories with on-shell particle creation) in section 3.

After a brief introduction to the AQFT framework in section 4, section 5 treats the light
ray/front restriction and algebraic holography in terms of associated chiral conformal field
theories. This connection is again a deep result of modular theory, and more specifically of
modular inclusions and intersections. There we also discuss the problem of inverting such
maps (the ‘blow-up’ property) in such a way that the original theory becomes reconstructed
from a finite number of copies of one abstract chiral theory whose relative position in one
Hilbert space has to be carefully chosen. In colloquial terms this is like scanning a higher-
dimensional massive theory by one chiral theory in different positions and we will refer to it
as ‘chiral scanning’. Since a finite number of relatively positioned chiral theories seems to
be easier to understand than one higher-dimensional massive theory, the chiral scanning is, in
addition, to the wedge algebra method and the use of PFGs, explained before a second potential
constructive idea based on modular theory. The mathematical technique used in section 5 is
one of the most powerful which AQFT presently is able to offer, namely the theory of modular
inclusions and intersections [2, 13].

In the same section we also take up the problem of associating entropy with localized
matter. In view of the fact that modular localization leads to thermal aspects which show
up in the appearance of a Hawking–Unruh temperature it is natural to ask for a concept of
‘localization entropy’ and, in the case when it exists, whether it gives a quantum version of the
Bekenstein area law for the area of the causal horizon of the localization region.

The final section tries to compare our approach with that of string theory. This is on the one
hand natural since both have similar historical roots, but difficult from a conceptual viewpoint
because string theory despite all its mathematical formalism has never developed beyond a
collection of recipes for formulating underlying principles. Whereas our approach has strong
ties with the older S-matrix bootstrap programme (apart from the incorrect TOE philosophy)
which only used properties abstracted from QFT, string theory via the dual model has added
many ad hoc inventions which did not originate through the intrinsic logic of S-matrix theory
and QFT and are not asked for by any known principle of particle physics. This is in my
view the reason why string theory despite all its semantic changes has remained a collection
of computational prescriptions without the guidance of a conceptual framework. Since basic
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physical issues such as locality and localizations, algebras versus states, etc should be discussed
on the level of physical principles and not by looking at formalism and computational recipes,
our comparisons in the last section unavoidably remains somewhat vague and superficial.

This presentation is in part a survey of published material [7, 21, 23, 30, 43, 50] as well
as of new results, in particular, the presentation of localization entropy in section 4. For the
convenience of the reader we attached a two-part appendix, the first part containing standard
facts about modular theory and the second one proving that in interacting theories there are no
polarization-free generators for subwedge spacetime regions.

2. Systems without interactions and factorizing models

In trying to bring readers with a good knowledge of standard QFT in contact with some new (and
old) concepts in algebraic QFT (AQFT) without sending them back with a lot of homework, I
face a tricky problem. Let us for the time being put aside the intrinsic logic which would ask
for a systematic presentation of the general framework, and let us instead try to manoeuvre in
a more less ad hoc (occasionally even muddled) way.

In a pedestrian approach the problem of constructing nets of interaction-free systems
from Wigner’s one-particle theory may serve as a nice pedagogical exercise for the new ideas.
The reader who is not familiar with Wigner’s representation theoretical method to describe
particle spaces is referred to [1, 20]. Since Wigner’s representation theory restricted to positive
energy representations was the first totally intrinsic relativistic quantum theory without any
quantization parallelism to classical particle theory, it is reasonable to expect in general that
if we find the right concepts, we should be able to avoid covariant pointlike fields altogether
in favour of a more intrinsic way of implementing the causality/locality principle. In that case
the local fields should be similar to coordinatizations of local observables in analogy with the
use of coordinates in modern differential geometry. This viewpoint is indeed consistent and
essential in the present context [21, 22].

Let us first understand how the free-field algebras are directly abstracted from Wigner’s
theory. By using a spatial variant of Tomita’s theory for the wedge situation, i.e. by
defining a kind of antilinear involutive ‘pre-Tomita’ operator s on the Wigner representation
space (without a von Neumann algebra), one obtains a real closed subspace HR(W) of the
Wigner space H of complex multi-component momentum space wavefunctions as a +1
eigenspace of the Tomita-like quantum mechanical operator s in H . Here W denotes the
x–t wedge x > |t | and s is defined to be the product of the iπ - continued x–t Lorentz boost
δ1/2(obtained by the functional calculus associated with the spectral theory of the boost operator
δiτ := U(�x,t (πτ)), πτ = rapidity) multiplied by the one-particle version of the (antiunitary)
j -reflection† in the x–t plane

s = jδ1/2

sψ = ψ ψ ∈ HR(W).
(3)

For the definition of the antiunitary Tomita involution j which represents the x–t reflection
in the case of antiparticles 
= particles) one needs to extend the Wigner representation to the
direct sum of particle/antiparticle spaces; a process well known in the Wigner theory if one
wants to include the disconnected Poincaré transformations. Since the x–t reflection commutes
with the x–t boost δit and is antiunitary, it formally inverts the unbounded δ, i.e. jδ = δ−1j ,
which is formally the analytically continuing boost at the imaginary value t = −i. As a

† Apart from a rotation around the x-axis by an angle π , this is the famous TCP operator restricted to the one-
particle/antiparticle subspace.
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result of this commutation relation the unbounded antilinear operator s is involutive on its
domain of definition s2 ⊂ 1. These unusual properties, which are not met anywhere else
in QM, encode geometric localization properties within abstract operator domains [21, 22].
They also pre-empt the relativistic locality properties of QFT which Wigner looked for in vain
[14]. The opposite localization, i.e. HR(W

opp), turns out to correspond to the symplectic (or
real orthogonal) complement of HR(W) in H , i.e. Im(ψ,HR(W)) = 0 � ψ ∈ HR(W

opp).
Furthermore, one finds the following properties for the subspaces called ‘standardness’:

HR(W) + iHR(W) is dense in H

HR(W) ∩ iHR(W) = {0} .
(4)

Having arrived at the wedge localization spaces, one may construct localization spaces for
smaller spacetime regions by forming intersections over all wedges which contain this region

HR(O) =
⋂

W⊃O
HR(W). (5)

These spaces are again standard and have their own premodular objects δ, j and s, but this
time their action cannot be described in terms of spacetime diffeomorphism. Note also that the
modular formalism characterizes the localization of subspaces, but is not able to distinguish
individual elements in that subspace. There is a good physical reason for that, because as soon
as one tries to do that, one is forced to leave the unique Wigner (m, s) representation framework
and pick a particular covariant representation by selecting one specific intertwiner among the
infinite set of u and v intertwiners which link the unique Wigner (m, s) representation to the
countably infinite many covariant possibilities [21]. In this way one would then pass to the
framework of covariant fields explained and presented in the first volume of Weinberg’s book
[20]. The description of a concrete element inHR(W) orHR(O) then depends on the choice of
covariant formalism. A selection by, for example, invoking Euler equations and the existence
of a Lagrangian formalism may be convenient for doing particular perturbative computations
or as a mnemotechnical device for classifying polynomial interaction densities†, but is not
demanded as an intrinsic attribute of physics.

The way to avoid non-unique covariant fields is to pass from Wigner subspaces directly
to von Neumann subalgebras of the algebra of all operators in Fock space B(HFock), i.e. the
transition from real subspaces to von Neumann subalgebras in Fock space is well known. With
the help of the Weyl (or CAR in the case of fermions) functor Weyl(·) one defines the local
von Neumann algebras [21, 22] generated from the Weyl operators

A(W) := alg {Weyl(f )|f ∈ HR(W)} (6)

a process which is sometimes misleadingly called ‘second quantization’. These Weyl
generators have the formal appearance

Weyl(f ) = eia(f ) (7)

a(f ) =
s∑

s3=−s

∫
(a∗(p, s3)fs3(p) + h.c.)

d3p

2ω

i.e. unlike the covariant fields they are independent of the non-unique intertwiners and depend
solely on the unique Wigner data. An analogue statement holds for the half-integer spin case
for which the CAR functor maps the Wigner wavefunction into the fermionic generators of

† The causal approach permits the transformation of a polynomial interaction from one coordinatization to any
other, whereas a formalism using classical actions involving free-field Lagrangians L0 is restricted to the use of
Euler–Lagrange field coordinatizations.
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von Neumann subalgebras. The statistics is already pre-empted by the premodular theory on
Wigner space [21]. The local net A(O)may be obtained in two ways, either one first constructs
the spaces HR(O) via (5) and then applies the Weyl functor, or one first constructs the net of
wedge algebras (6) and then intersects the algebras.

If we had taken the conventional route via intertwiners and local fields as in [20], then we
would have been forced to use Borchers’ construction of equivalence classes† in order to see
that the different free fields associated with the (m, s) representation with the same momentum
space creation and annihilation operators in Fock space are just different generators of the same
coherent families of local algebras, i.e. yield the same net. This would be analogous to working
with particular coordinates in differential geometry and then proving at the end that the objects
of interest are invariant and therefore independent of coordinates.

The implementation of interactions within the framework of nets requires a radical
rethinking of the formalism, even if we are only interested in perturbative aspects. The use of
the above method for the Wigner one-particle representation and the subsequent introduction
of interactions will inevitably force us to reintroduce field coordinates in order to define what
we mean by perturbative interactions. In order to avoid the standard approach we therefore
have to find a way to introduce interactions directly into wedge-localized multiparticle spaces
or wedge algebras.

In order to find out how we can avoid the use of pointlike fields in interacting situations, let
us first ask this question in a more limited context. It is well known that there exists a special
class of theories in d = 1 + 1 in which the S-matrix commutes with the incoming particle
number

[Ssc,Nin] = 0 (8)

and factorizes on multi-particle in-states [16–18]. For this reason these theories are often
referred to as factorizing or integrable (since this leads to an infinite number of conservation
laws) models. For those one finds that not only can the old bootstrap programme be carried
through, but the application of the so-called formfactor programme allows us to compute
even the fields in the sense of bilinear forms between in and out states [25, 28]. Let us
ignore those bootstrap–formfactor recipes and try find a modular access to these models
by implementing the idea of a relativistic particle pair interaction with a very naive ansatz
(assuming for simplicity a situation of self-conjugate particles) which formally generalizes the
standard creation/annihilation operators. Using rapidities instead of momenta we require

Z(θ)Z(θ ′) = S(θ − θ ′)Z(θ ′)Z(θ)

Z(θ)Z∗(θ ′) = S−1(θ − θ ′)Z∗(θ ′)Z(θ) + δ(θ − θ ′)
(9)

with the star-structure determining the remaining commutation relations and the unitarity of S
with S−1(θ) = S̄(θ) = S(−θ), etc. Together withZ(θ)% = 0 we can express allZ correlation
functions in terms of Ss and the computation of correlation functions proceeds as for free fields,
namely by commuting the annihilation operators Z to the right vacuum, e.g.(
%,Z(θ4)Z(θ3)Z

∗(θ2)Z
∗(θ1)%

) = S(θ2 − θ3)δ(θ3 − θ1)δ(θ4 − θ2)

+δ(θ3 − θ2)δ(θ4 − θ1). (10)

Although we use the pre-emptive notation Z which refers to the Zamolodchikov–Faddeev
algebra‡, there are for the time being no requirements on the coefficients which go beyond

† The class of covariant free fields belonging to the same (m, s) is a linear subclass of the full equivalence class which
comprises all Wick polynomials. In analogy with coordinates in differential geometry this subclass corresponds to
linear coordinate transformations.
‡ The missing delta-function contribution in Zamolodchikov’s original proposal [26] was later added by Faddeev.
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those following from the structure of a distributive ∗-algebra, i.e. crossing symmetry is not
required but will result from wedge localization.

One easily sees that instead of postulating commutation relations, we could also have
started from the following formula which represents Z∗Z∗% state vectors in terms of
corresponding free-field terms

Z∗(θ2)Z
∗(θ1)% = 1√

2
(χ21a

∗(θ2)a
∗(θ1)% + χ12S(θ2 − θ1)a

∗(θ1)a
∗(θ2)%). (11)

Here the symbol χP(1)...P (n) denotes the characteristic function of the region θP(1) > · · · >
θP(n). It is easy to see that the inner product agrees with (10); one only has to use the identity{
χ12S(θ2 − θ1) + χ21S̄(θ3 − θ4)

}
δ(θ3 − θ1)δ(θ4 − θ2) = S(θ2 − θ1)δ(θ3 − θ1)δ(θ4 − θ2).

(12)

In fact, if we had started with a more general two-particle interaction ansatz by allowing the
structure of the second equation in (9) to be different say S−1 → T , the consistency with (11)
would immediately force us to return to T = S−1.

The formula for the four-point function suggests the possibility to replace the algebraic
ansatz by the following formula for multi-Z∗ state vectors:

Z∗(θn) . . . Z∗(θ1)% =
∑
perm

χP(n)...P (1)

( ∏
transp

S

)
a∗(θP (n)) . . . a∗(θP (1)) % (13)

where the product of S-factors in the brackets contains one S for each transposition which
expresses the two-body nature of the interaction. The associativity of the Zs, i.e. the
Yang–Baxter relation for matrix-valued Ss ensures the consistency of the formula. We
call θP(1) > · · · > θP(n) the natural order of the multi-Z∗ state vector. From the state
characterization (13) one can derive the algebraic definition (9).

With these algebraic prerequisites out of the way, let us now return to the physics and
investigate the spacetime localization properties of the following Hermitian operators:

F(f̂ ) =
∫

F(x)f̂ (x) d2x supp f̂ ∈ W

=
∫
C

Z(θ)f̄ (θ) Z(θ − iπ) := Z∗(θ) (14)

f̂ (x) = 1√
2π

∫
(f (θ)e−ipx + c.c.) dθ f̄ (iπ − θ) = f (θ)

where C is a path consisting of the upper/lower rim of a iπ -strip with the real θ -axis being the
upper boundary. Whereas the on-shell value of the Fourier transform f (θ) of f̂ is analytic in
this strip, the last relation is a notation (since operators by themselves are never analytic
in spacetime labels!) which, however, inside expectation values becomes coherent with
meromorphic properties. If we take instead of Z# free creation/annihilation operators, the
corresponding formula

∫
C
a(θ)f̄ (θ) represents wedge-localized smeared free fields. Formally,

we may write in analogy to free fields

F(x) = 1√
2π

∫
(e−ipxZ(θ) + h.c.) dθ

p = m(cosh θ, sinh θ)
(15)

but we should be aware that the argument x is not related to a pointlike localization in the
sense of causality since on-shell fields are local iff they are bona fide free fields, i.e. iff the Zs
reduce to the standard creation/annihilation operators (see the appendix).
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In the following we will prove that the operators F(f̂ ) with Z# fulfilling (9) are localized
in the wedge x > |t | if and only if the ∗-algebra can be extended to a Zamolodchikov–Faddeev
algebra, i.e. iff the coefficients S are crossing symmetric, including the crossing-symmetric
bootstrap pole structure. Following our previously introduced terminology [21], we will use
the name polarization-free generators for localized operators in interacting QFT whose one
time application to the vacuum vector results in a one-particle state vector. It is well known [18]
that PFGs with smaller than wedge localization regions (e.g. double cones, spacelike cones)
can only exist in theories without interactions, i.e. ψ in

f1...fn
= ψout

f1...fn
. For the convenience of

the reader we present the argument in an appendix. PFGs, however, always exist in regions in
interacting theories if the localization region is a wedge or bigger [31]. The argument is based
on modular theory and will be recollected in the next section.

We want to show that the above F can indeed be converted into bona fide PFGs and
for a proof we have to check the KMS property for the F -correlation functions with the
modular generator being the infinitesimal boost K . This property is a prerequisite for any
wedge-localized algebra in a Wightman QFT [12]. The KMS property is well known from
statistical mechanics and is the substitute for the Gibbs formula which for many quantum
systems becomes meaningless in the thermodynamic limit. In the present context its thermal
aspects has been discussed in [21]. The desired KMS property for the wedge reads

〈F(f̂n) . . . F (f̂1)〉 = 〈F(f̂n−1) . . . F (f̂2)F (f̂
2π i
n )〉 (16)

where the superscript 2π i indicates the imaginary rapidity translation from the lower to the
upper rim of the KMS strip.

A rather straightforward calculation based on the previously explained rules for the Zs
yields the following result.

Theorem 1 (See [21, 50]). The KMS-thermal aspect of the wedge algebra generated by the
PFGs is equivalent to the crossing symmetry of the S-matrix

A(W) := alg
{
F(f̂ ); supp f̂ ∈ W

}
⇔ S(θ) = S(iπ − θ).

Furthermore, the possible crossing symmetric poles in the physical strip of S will be converted
into intermediate composite particle states in the GNS Hilbert space associated with the state
defined by the correlations on the A(W )-algebra. The latter commutes with its geometric
opposite A(W opp) in the case of A(W opp) = A(W)′ = A dJA(W). A sufficient condition for
this is the existence of a parity transformation whose action on A(W) equals the commutant
A(W)′.

Since the F s are unbounded operators with (particle number) N -bounds which are the
same as for free fields, the algebra generated by them is to be understood in the sense that they
are affiliated with the von Neumann algebra which they generate.

We recall the proof for the four-point function of F s which may be obtained as the scalar
product of two-particle state vectors (c.t. denotes the F -contraction terms)

F(f̂2)F (f̂1)% =
∫ ∫

f̄2(θ2 − iπ)f̄1(θ1 − iπ)Z∗(θ1)Z
∗(θ2)% + c.t. (17)

=
∫ ∫

f̄2(θ2 − iπ)f̄1(θ1 − iπ){χ12a
∗(θ1)a

∗(θ2)%

+χ21S(θ2 − θ1)a
∗(θ2)a

∗(θ1)%} + c% (18)

and the analogous formula for the bra-vector. The formula needs some explanation. The
symbolχ with the permutation subscript denotes as before the characteristic function associated
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with the permuted rapidity order. The order for the free creation operators a∗ is governed by
particle statistics. For each transposition starting from the natural order (13), one obtains an S
factor†. The Yang–Baxter relation ensures that the various ways of doing this are consistent.
For the inner product the S-dependent terms are. Finally, the terms proportional to the vacuum
are contraction terms corresponding to the δ-function in (9). For the S-dependent terms in the
inner product we obtain∫ ∫

f4(θ2)f3(θ1){χ21S(θ2 − θ1) + χ12S̄(θ1 − θ2)}f̄2(θ2 − iπ)f̄1(θ1 − iπ) dθ1 dθ2

=
∫ ∫

f4(θ2)f4(θ1)S(θ2 − θ1)f̄2(θ2 − iπ)f̄1(θ1 − iπ) dθ1 dθ2. (19)

The analogous computation for the KMS crossed term in (24) gives∫ ∫
f2′(θ1)f2(θ2)S(θ1 − θ2)f1(θ1 − iπ)f1′(θ2 − iπ + 2π i) dθ1 dθ2. (20)

This formula only makes sense if the F(f ) operators are restricted in such a way that the 2π i
translation on them is well defined, i.e. for wavefunctions f which are analytic in a strip of
size 2π i. It is well known that the KMS condition does not hold on all operators of the algebra,
but rather on a dense set of suitably defined analytic elements [24]. The S-independent terms
which we have not written down are identical to terms in the four-point function of free fields
They separately satisfy the KMS property. What remains is to show the identity of (19) and
(20). This is done by a θ2 → θ2 − iπ contour shift in (20) without picking up terms from
infinity. Using the denseness of the wavefunctions one finally obtains

S(θ2 − θ1) = S(θ1 − θ2 + iπ) (21)

which is the famous crossing symmetry or the z←→−z reflection symmetry around the point
z0 = 1

2 iπ . For the non-self-conjugate situation the crossed particles are antiparticles and the
S on the right-hand side has to be modified accordingly.

In physical terms we may say that the wedge structure of factorizing models is that of a
kind of relativistic quantum mechanics. This continues to be true if the crossing symmetric
S-matrix has poles in the physical strip. In that case the above contour shift would violate the
KMS property unless one modifies the multi-Z∗ state vector formula (13) by the inclusion of
bound states. For the case n = 2 (11) this means

Z∗(θ2)Z
∗(θ1)% =

(
Z∗(θ2)Z

∗(θ1)%
)scat

+ |θ, b〉 〈θ, b|Z∗(θ − iθb)Z
∗(θ + iθb)|%〉. (22)

The bracket with the superscript ‘scat’ denotes the previous contribution (11), whereas the last
term denotes the bound state contribution. The validity of the KMS property demands the
presence of this term and determines the coefficient; here θb is the imaginary rapidity related
to the bound state mass. For a detailed treatment which includes the bound state problem, we
refer to a future paper. We emphasize again that it is the representation of the F -correlations in
terms of the S-matrix and the KMS property of these correlation functions, which via the GNS
construction converts the poles in the (possibly matrix-valued) function S into the extension of
the Fock space of the as by additional free-field operators. In this way the poles in numerical
functions are converted into the enlargement of Fock space in such a way that a few Zs can

† The notation has used the statistics in order to bring the product of incoming fields ain into the natural order say
1, . . . , n. The ordering of theZs encodes the θ -ordering and not the particle statistics. It is connected with the different
boundary values of state vectors and expectation values in θ -space in approaching the physical boundary from the
analytic region. This is analogous to the association of the n! n-point x-space correlation functions with different
boundary values of one analytic ‘master function’ in the Wightman theory.
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describe many more particles. One may call Z ‘fundamental’ and introduce new Zb and Fbs;
the latter will, however, be operators which are already associated with the original F -algebra.
What needs an extension is the wedge algebra of incoming fields. It is very important to note
that this apparent quantum mechanical picture is converted into LQP with vacuum polarization
as soon as we, for example, go to double-cone localization; this will be shown in the following.
The extension of the above proof beyond four-point functions is left to the reader.

With this theorem relating wedge localization via the thermal KMS property to crossing
symmetry, we have achieved the main goal of this section: to show that the Zamolodchikov–
Faddeev algebra which consists of (9) together with the crossing symmetry of its structure
function has a deep spacetime interpretation and an associated thermal KMS aspect. In fact,
the simplest PFGs which fulfil conservation of the real particle number and have only elastic
scattering (possible in d = 1 + 1) are precisely the ZF algebra operators! In a moment we
will see that these models have the full interacting vacuum structure (virtual particle non-
conservation) with respect to operators from smaller localization regions (e.g. double cones),
i.e. we are dealing with a genuine interacting field theory (and not some relativistic quantum
mechanics).

The KMS computation can be immediately extended to ‘formfactors’, i.e. mixed
correlation functions containing in addition to F s one generic operator A ∈ A(W) so that the
previous calculation results from the specialization A = 1. This is so because the connected
parts of the mixed correlation function is related to the various (n,m) formfactors (1) obtained
by the different ways of distributing n+m particles for in and out states. These formfactors are
described by different boundary values of one analytic master function which is, in turn, related
to the various forward/backward on-shell values which appear in one mixed A–F correlation
function. We may start from the correlation function with one A to the left and say n F s to
the right and write the KMS condition as

〈AF(f̂n) . . . F (f̂2)F (f̂1)〉 = 〈F(f̂ 2π i
1 )AF(f̂n) . . . F (f̂2)〉. (23)

The n-fold application of the F s to the vacuum on the left-hand side creates, besides an n-
particle term involving n operators Z∗ to the vacuum (or KMS reference state vector) %,
contributions from a lower number of Z∗s together with Z–Z∗ contractions. As with free
fields, the n-particle contribution can be isolated by Wick-ordering†

〈A : F(f̂n) . . . F (f̂2)F (f̂1) :〉 = 〈F(f̂ 2π i
1 )A : F(f̂n) . . . F (f̂2) :〉. (24)

Rewritten in terms of A formfactors the n-particle scattering contribution (using the denseness
of the f (θ)) reads as〈
%,AZ∗(θn) . . . Z∗(θ2)Z

∗(θ1 − 2π i)%
〉

= 〈
%,Z(θ1 + iπ)AZ∗(θn) . . . Z∗(θ2)%

〉
= 〈

Z∗(θ1 − iπ)%,AZ∗(θn) . . . Z∗(θ2)Z
∗(θ)%

〉
. (25)

Here the notation suffers from the usual sloppiness of physicists’ notation: the analytic
continuation by 2π i refers to the correlation function and not to the operators. For the natural
order of rapidities θn > · · · > θ1 this yields the following crossing relation:〈
%,Aa∗in(θn) . . . a

∗
in(θ2)a

∗
in(θ1 − π i)%

〉 = 〈
a∗out(θ1)%,Aa∗in(θn) . . . a

∗
in(θ2)%

〉
. (26)

The out-scattering notation on the bra-vectors only becomes relevant upon iteration of the
KMS condition since the bra Zs have the opposite natural order. The above KMS relation (24)

† Note that as a result of the commutation relation (9), the change of order within the Wick-ordered products will
produce rapidity-dependent factors
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contains additional information about bound states and scattering states with a lower number
of particles. The generalization to the case of antiparticles 
= particles is straightforward. More
generally, we see that the connected part of the mixed matrix elements〈

a∗out(θk) . . . a
∗
out(θ1)%,Aa∗in(θn) . . . a

∗
in(θk−1)%

〉
(27)

is related to 〈%,AZ∗(θn) . . . Z∗(θ2)Z
∗(θ1)%〉 by analytic continuation which a posteriori

justifies the use of the name formfactors in connection with the mixed A–F correlation
functions.

The upshot of this is that such an A must be of the form

A =
∑ 1

n!

∫
C

. . .

∫
C

an(θ1, . . . θn) : Z(θ1) . . . Z(θn) : (28)

where the an have a simple relation to the various formfactors of A (including bound states)
whose different in–out distributions of momenta correspond to the different contributions to
the integral from the upper/lower rim of the strip bounded by C, which are related by crossing.
The transcription of the an coefficient functions into physical formfactors (27) complicates
the notation, since in the presence of bound states there are a larger number of Fock space
particle creation operators than PFG wedge generators F . It is comforting to know that the
wedge generators, despite their lack of vacuum polarization clouds, nevertheless contain the
full (bound state) particle content (as the bound state formalism of local fields). The wedge
algebra structure for factorizing models is like a relativistic QM, but as soon as one sharpens the
localization beyond wedge localization, the field-theoretic vacuum structure will destroy this
simple picture and replace it with the appearance of the characteristic virtual particle structure
which separates local quantum physics from quantum mechanics.

In order to see by what mechanism the quantum mechanical picture is lost in the next
step of localization, let us consider the construction of the double-cone algebras as a relative
commutants of a shifted wedge (shifted by a inside the standard wedge)

A(Ca) := A(Wa)
′ ∩A(W)

Ca = W opp
a ∩W.

(29)

For A ∈ A(Ca) ⊂ A(W) and Fa(f̂i) ∈ A(Wa) ⊂ A(W) the KMS condition for the W -
localization reads as before, except that whenever an Fa(f̂i) is crossed to the left-hand side of
A, we may commute it back to the right-hand side since [A(Ca), Fa(f̂i)] = 0. The resulting
relations are, for example,

〈AFa(f̂1) : Fa(f̂n) . . . Fa(f̂2) :〉 = 〈A : Fa(f̂n) . . . Fa(f̂2)Fa(f̂
2π i
1 ) :〉. (30)

Note that Fa(f̂1) is outside the Wick-ordering. Since it acts neither on the bra nor the ket
vacuum, it contains both frequency parts. The creation part can be combined with the other
F s under one common Wick-ordering, whereas the annihilation part via contraction with one
of the Wick-ordered F s will give an expectation value of one A with (n − 2) F s. Using
the representation (14) for the F s and going to rapidity space we obtain [23] the so-called
kinematical pole relation

Resθ12=iπ
〈
AZ∗(θn) . . . Z∗(θ2)Z

∗(θ1)
〉 = 2iC12

〈
AZ∗(θn) . . . Z∗(θ3)

〉
(1− S1n . . . S13). (31)

Here the product of two-particle S-matrices results from commuting the Z(θ1) to the right so
that it stands to the left of Z∗(θ2), whereas the charge-conjugation matrix C only appears if
we relax our assumption of self-conjugacy.

I believe that the general issue of the shape of polarization clouds in terms of their
asymptotic (say incoming) particle content is intimately related to the structure of the as
yet unknown modular automorphisms which exist for each spacetime region.
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The relation (31) appears for the first time in Smirnov’s axiomatic approach [28] as one
of his recipes; more recently it was derived as a consequence of the LSZ formalism adapted to
the factorizing model situation [29]. In the present approach it has an apparently very different
origin: it is together with the ZF algebra structure a consequence of the wedge localization
of the generators F(f̂ ) and the sharpened double-cone locality (29) of A. The existence
problem for the QFT associated with an admissible S-matrix (unitary, crossing symmetric,
correct physical residua at one-particle poles) of a factorizing theory is the non-triviality of
the relative commutant algebra, i.e. A(Ca) 
= C · 1. Intuitively, the operators in double-cone
algebras are expected to behave similarly to pointlike fields applied to the vacuum. Namely,
one expects the full interacting polarization cloud structure. For the case at hand this is, in fact,
a consequence of the above kinematical pole formula since this leads to a recursion which for
non-trivial two-particle S-matrices is inconsistent with a finite number of terms in (28). Only
if the bracket containing the S-products vanishes, is the operator A a composite of a free field.

The determination of a relative commutant or an intersection of wedge algebras even
in the context of factorizing models is not an easy matter. We expect that the use of the
following ‘holographic’ structure significantly simplifies this problem. We first perform a
lightlike translation of the wedge into itself by letting it slide along the upper light ray by an
amount given by the lightlike vector a+. We obtain an inclusion of algebras and an associated
relative commutant

A(Wa±) ⊂ A(W)

A(Wa±)
′ ∩A(W).

(32)

The intuitive picture is that the relative commutant lives on the a± interval of the upper/lower
light ray, since this is the only region insideW which is spacelike to the interior of the respective
shifted wedges. This relative commutant subalgebra is a light ray part of the above double-cone
algebra, and it has an easier mathematical structure. One only has to take a generic operator
in the wedge algebra which formally can be written as a power series (28) in the generators
and [21, 50] find those operators which commute with the shifted F s[

A,U(e+)F (f )U
∗(e+)

] = 0. (33)

Since the shifted F s are linear expressions in the Zs, the nth-order polynomial contribution
to the commutator comes from only two adjacent terms in A; namely from an+1 and an−1,
which correspond to the annihilation/creation term in F . The size of the shift gives rise to
a Paley–Wiener behaviour in the imaginary direction, whereas the relation between an+1 and
an−1 is identical to (31), so we do not learn anything new beyond what was already observed
with the KMS technique (30). However, as will be explained in section 5, the net obtained
from the algebra

A± := ∪a±A(Ca±) (34)

is a chiral conformal net on the respective subspace H± = A±%. If our initial algebra were

d = 1 + 1 conformal, the total space would factorize H = H+⊗̄H− =
(A+⊗̄A−

)
%, and

we would recover the well known fact that two-dimensional local theories factorize into the
two light ray theories. If the theory is massive, we expect H = A+%, i.e. the Hilbert space
obtained from one horizon already contains all state vectors. This would correspond to the
difference in classical propagation of characteristic massless versus massive data in d = 1 + 1.
There it is known that although for the massless case one needs the characteristic data on the
two light rays, the massive case requires only one light ray. In fact, there exists a rigorous
proof that this classical behaviour carries over to free quantum fields: with the exception of
m = 0 massless theories, in all other cases (including lightfront data for higher-dimensional
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m = 0 situations) the vacuum is cyclic with respect to one lightfront H = A±% [30]. The
proof is representation theoretic and holds for all cases except the d = 1 + 1 massless case.
Hence in the case of interaction-free algebras the holographic lightfront reduction which, has
d − 1 dimensions, always fulfils the Reeh–Schlieder property for d > 2, where for d = 1 + 1
only massive theories obey holographic cyclicity. In order to recover the wedge algebra with
its net structure from the holographic restriction, one needs the opposite light ray translation
with U(a−), i.e. A(W) = ∪a−<0A dU(a−)A+. For the non-triviality of the net associated with
A(W) it is sufficient to show that the associated chiral conformal theory is non-trivial. In
order to achieve this, one has to convert the bilinear forms (28) in the Z-basis, which fulfil the
recursion relation into genuine operators on the one-dimensional light ray. This is beyond the
scope of this paper.

Hence the modular approach leads to a dichotomy of real particle creation (absent in
factorizing models) in the PFGs and in the aspect of wedge localization, versus the full QFT
virtual particle structure of the vacuum† for the more sharply localized operators. In some
sense the wedge is the best compromise between the particle/field point of view. In this and
only in this sense the particle–field dualism (as a generalization of the particle–wave dualism
of QM) applies to QFT. Since it is left invariant by an appropriate L-boost, the algebra contains
enough operators in order to resolve at least the vacuum and one-particle states (which cannot
be resolved from the remaining states in any algebra with a smaller localization).

In the next section we will argue that these properties are not freaks of factorizing models,
whereas in a later section we will reveal the more mathematical aspects of lightcone subalgebras
and holography. As we have argued on the basis of the previous pedestrian approach, the
holography aspect will be important in the modular construction of QFTs, because it delegates
certain properties of a rather complicated theory to those of (in general several) simpler
theories.

It is worthwhile highlighting two aspects which already are visible from these
considerations. One is the notion of ‘quantum localization’ in terms of algebraic intersections
as compared with the more classical localization in terms of test function smearing of pointlike
fields. As mentioned already, the wedge localization of the PFGs cannot be improved by
choosing smaller supports of test functions inside the wedge; the only possibility is to intersect
algebras. In that case the old generators become useless, for example, in the description of the
double-cone algebras; the latter has new generators. Related to this is that the short-distance
behaviour loses its dominant role.

If one does not use field coordinatizations, it is not even clear what one means by ‘the
(good or bad) short-distance behaviour of a theory’. Short-distance behaviour of what object?
There is no short-distance problem of PFGs, since they have some ‘natural cut-off’ (to the
extent that the use of such words which are filled with preassigned old meaning are reasonable
in the new context). The intersection of algebras does not give rise to short-distance problems
in the standard sense of this word. An explicit construction of pointlike field coordinates from
algebraic nets is presently only available for chiral conformal theories [33]. It produces fields
of arbitrary high operator dimension, and as a result of its group-theoretical techniques it also
does not suffer from short-distance problems. The absence of short-distance problems in the
modular localization approach seems to be of an entirely different nature from statements about
the absence of ultraviolet problems in string theory.

The results in this section should be viewed as an extension of the Wigner theory into the
realm of interactions for a special class of models.

† The deeper understanding of the virtual vacuum structure (or the particle content of say state vectors obtained
by application of a double-cone localized operator to the vacuum) is presumably hidden in the modular groups of
double-cone algebras.
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3. PFGs in the presence of real particle creation

For models with real particle creation it is not immediately clear how to construct PFGs. In
order to obtain some clue we first look at d = 1 + 1 theories which do not have any transversal
extension to wedges. Furthermore, we assume that there is only one kind of particle which
corresponds to the previous assumption concerning the absence of poles in the two-particle
S-matrix for factorizing models. Modular theory always ensures the existence of PFGs [31].
In fact, for every modular localized state vector

Sψ = ψ

S = J31/2
(35)

there exists a (generally unbounded) operator G associated with the von Neumann A algebra
in standard position such that

G% = ψ (36)

G∗% = Sψ. (37)

For the case at hand A = A(W),% = |0〉 = vacuum, there exists a dense subspace of explicitly
constructable (see below) wedge-localized state vectors HFock

R +iHFock
R which possess affiliated

Gs. Since HR(W) ⊂ HFock
R there exists an algebra-affiliated operator F(f ) for each vector f

in HR(W) + iHR(W) with

F(f )% = |f 〉 = one-particle state

F(f )∗% = S |f 〉 .
(38)

Although the existence of PFGs outside of factorizing models poses no problems, the
presence of particle creation prevents them from having amenable algebraic properties. The
interpretation in the form of

F(f ) =
∫

F(x)f̂ (x) d2x (39)

F(x) =
∫ (

Z(θ) e−ipx + Z̄∗(θ) eipx
)

dθ (40)

where F(x) is a tempered operator-valued distribution on a dense translation-invariant domain
which holds in the factorizing case is not compatible with particle creation [31] because it
leads to relative commutation relations of F with the incoming/outgoing free field[

Z#(θ), a#
in(θ

′)
] = 0, θ < θ ′[

Z#(θ), a#
out(θ

′)
] = 0, θ > θ ′

(41)

and similarly for the antiparticle operators Z̄#. Therefore, we will first try to see how far we
can get with localized states.

Again we specialize to the self-conjugate case Z̄ = Z and the absence of bound states.
From the previous discussion we take the idea that we should look for a relation between
the ordering of rapidities and the action of the scattering operator. We fix the state vector
ψ(θn, . . . , θ1) for the natural θ -order to be an incoming n-particle state as we did for the
previous particle-conserving situation. The totally mirrored order should then be a vector
obtained by applying the full S-matrix to the incoming n-particle vector.

However, what should we do for the remaining permutations? We should end up with
a prescription which for factorizing systems agrees with the previous formalism. For two
f s there is no problem; the formula looks as before (11), except that the application of the
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S-operator to the two-particle in-vector has components to all n-particle multiparticle vectors
for n � 2, i.e. the rapidities are labels which are not related to the incoming particle content
of the state vector

ψ2(f2, f1) ∼
∫ ∫

C

(χ21a(θ2)a(θ1) + χ21Sa(θ1)a(θ2)) |0〉 f̄2(θ2)f̄1(θ1) dθ2 dθ1

× 〈
0|a(θn) . . . a(θ3)Sa

∗(θ1)a
∗(θ2)|0

〉 
= 0 n � 4. (42)

The check of the localization equation J31/2ψ2 = ψ2 with J = J0S (again we omitted the
subscript ‘scat’ from the S-matrix and we used the previous notation where the integration
path C includes creation as well as annihilation contributions there will also be a contraction
term. The inner product between two ψ2 turns out to be∫

f̄ ′1(θ
′
1)f̄

′
2(θ

′
2)

〈
0|a(θ ′1)a(θ ′2)a∗(θ2)a

∗(θ1)|0
〉
f2(θ2)f1(θ1) + c.t.

+
∫

f̄ ′1(θ
′
1)f̄

′
2(θ

′
2) 〈0| a(θ ′2)a(θ ′1)(Sχ21 + S∗χ12)a

∗(θ2)a
∗(θ1 |0〉 f2(θ2)f1(θ1)

(43)

where c.t. denotes the contraction term contributions coming from an annihilation part in C

and we have disregarded problems of overall normalizations and the integration is done over
all θ and θ ′. Using the unitarity property of S and the boundary property f̄ (iπ − θ) = f (θ),
the last term can be written without the ordering χs as

f̄ ′1(θ
′
1)f̄

′
2(θ

′
2) 〈0| a(θ ′2)a(θ ′1)Sa∗(θ2)a

∗(θ1 |0〉 f2(θ2)f1(θ1) (44)

and has the same form as for the previous factorizing case if one replaces (20). In order to
establish the KMS property we have to write this inner product as

(ψ ′2, ψ2) = (ψ ′1, ψ3) (45)

whereψ1 is a one-particle vector. So we have to figure out how permutations beyond the natural
order and its mirror image are represented on tensor product factors of incoming state vectors.
Some thinking reveals that subsequent applications of S-matrices on tensor factors of the n-
particle tensor product vectors only makes sense for non-overlapping situations. The action of
the S-matrix on one tensor factor is associated with the mirror perturbation of that tensor factor
12 . . . k → k . . . 21 since intuitively speaking one only obtains the full k-particle scattering
if the incoming velocities (or rapidities) are such that all particles meet kinematically, which
only happens if the order of incoming velocities is the mirrored natural order. Mathematically,
we should write each permutation as the non-overlapping product of ‘mirror permutations’
The smallest mirror permutations are transpositions of adjacent factors. An example for
an overlapping product is the product of two such transpositions which have one element in
common, e.g. 123 → 132 → 312; there is no meaning in terms of a subsequent tensorS-matrix
action. However, the composition 123 → 213 → 312 has a meaningful S-matrix counterpart;
namely S · S12a

∗(θ1)a
∗(θ2)a

∗(θ3)% where S12 leaves the third tensor factor unchanged, i.e. is
the Fock space vector (Sa∗(θ1)a

∗(θ2)%)⊗a∗(θ3)% on which the subsequent action of S (which
corresponds to the mirror permutation of all three objects) is well defined. In general, if one
mirror permutation is completely inside a larger one the scattering correspondence which is
consistent with the tensor product structure of Fock space. On the other hand, for overlapping
products of mirror permutations the association to scattering data becomes meaningless, where
overlapping means that part of each mirror permutation is outside of the other. Fortunately,
as it is easy to see, there is precisely one representation in terms of non-overlapping mirror
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permutations. This leads to a unique representation of multi-f labelled state vectors in terms of
scattering data. On the other hand, if we were to write each mirror permutation as a product of
(necessarily overlapping) transpositions, we lose the uniqueness and we then need the Yang–
Baxter structure in order to maintain consistency; in this case we return to the modular setting
of factorizing models in the previous section.

Let us elaborate this in a pedestrian fashion by writing explicit formulae for n = 3. The
state vector is a sum of 3! = 6 terms

ψ3(f3, f2, f1) �
∫ ∫ ∫

C

{χ321a(θ3)a(θ2)a(θ1) + χ312S21a
∗(θ3)a

∗(θ2)a
∗(θ1)

+χ231S32a(θ3)a(θ2)a(θ1) + χ123S321a(θ3)a(θ2)a(θ1)

+χ132S321 · S∗23a
∗(θ3)a(θ2)a(θ1)

+χ213S321 · S∗12a(θ3)a(θ2)a(θ1)} |0〉 f̄3(θ3)f̄2(θ2)f̄1(θ1).

Here χ denotes again the characteristic function of the respective θ -orders and S... acts on
the respective tensor factor with the remaining particle being a spectator. As before one checks
that this vector fulfils the modular localization equation SJ03

1/2ψ3 = ψ3; the Tomita operator
acting onψ3 just reshuffles the six terms. As in the two-particle case, this action creates a vector
with a complicated incoming particle content having components to all particle numbers. The
last two terms correspond to nested mirror permutations and, as will be seen below, results
in the appearance of ‘non-diagonal inclusive processes’ terms in the (ψ ′3, ψ3) inner product
which generalize the diagonal inclusive processes [7] which result from the summation over
final states in cross sections.

As an example we write down the integrand of one of those non-diagonal inclusive terms〈
0

∣∣a(θ ′1)a(θ ′2)a(θ ′3)S · S∗12a
∗(θ3)a

∗(θ2)a
∗(θ1)

∣∣ 0
〉
. (46)

In a graphical scattering representation particles 1 and 2 would scatter first and produce
arbitrarily many (subject to the conservation laws for the total energy–momentum) particles
which together with the third incoming particle (which hitherto was only a spectator) enter an
additional scattering process of which only the three-particle outgoing component is separated
out by the matrix element in (46). The dot denotes summation over all admissible intermediate
states and could be represented by, for example, a heavy line in the graphical representation in
order to distinguish it from the one-particle lines. We will not write down the six contributions
to the inner product coming from the creation part and the remaining ones involving the
annihilation parts from the path C.

Our main interest is the study of (ψ ′1, ψ3),

(ψ ′1, ψ3) =
∫
C

〈
0

∣∣a(θ ′1){1χ321 + Sχ123 + S · S12χ213}a(θ3)a(θ2)a(θ1)
∣∣0〉

×f̄ ′1(θ ′1)f̄3(θ3)f̄2(θ2)f̄1(θ1)

=
∫ 〈

0
∣∣a(θ ′1){1χ321 + S + S · S12χ213}a(θ3)a

∗(θ2)a
∗(θ1)

∣∣0〉

×f̄ ′1(θ ′1)f̄3(θ3)f2(θ2)f1(θ1)

=
∫ 〈

0
∣∣a(θ ′1)a(θ3){1 + S}a∗(θ2)a

∗(θ1)
∣∣0〉

f̄ ′1(θ
′
1)f̄3(θ3)f2(θ2)f1(θ1). (47)

The last line is (apart from an a(θ2)–a∗(θ1) contraction term) the only non-vanishing
contribution. Here the S-factor in front of S12 has been transferred as S∗ onto the left-hand



5250 B Schroer

one-particle vector whereupon it acts as the identity. Renaming f3(θ3) → f ′(θ ′2) we obtain
the result (43). We now apply the KMS property for inner products of modular subspaces(

ψ ′, ψ
) = (

ψ,3ψ ′
)

ψ,ψ ′ ∈ HR(W) ⊂ HFock.
(48)

For the case at hand ψ ′ = ψ ′1, ψ = ψ3 the particle interpretation of this KMS relation
for modular vectors is precisely the crossing symmetry relation. For the more general case
antiparticles 
= particles, one has to work in the dense complex subspace HR(W) + iHR(W)

(which is a complete Hilbert space in its own right in the thermal topology [21]. The conversion
of the KMS property for the inner product of the modular localized state vectors with n − 1
f labels with a one-particle vector containing one f contains the crossing information for
scattering of nin + nout = n particles.

The crucial question is whether these inner products can also be used in order to define
correlation functions of PFG n-point functions

〈0 |F(f1) . . . F (fn)| 0〉 (49)

for the lowest non-trivial case of a four-point function we have already checked one such
condition (45). I have carried out other consistency checks and do not think that the
prerequisites of [31] leading back to particle conservation can be derived from these correlation
functions. The question of whether and how these would be correlation functions are related to
the perturbative on-shell S-matrix representations mentioned in the introduction is particularly
interesting and I hope to return to the issue of the form of PFG correlation functions in a more
complete and systematic way in a future paper.

For non-factorizing theories the interest in the modular localization approach is (besides
the improvement in the understanding the structure of interacting QFT) the possible existence
of an on-shell perturbation theory of local nets, avoiding the use of the non-intrinsic field
coordinatizations. This is a revival of the perturbative version of the old dream to construct S-
matrices just using crossing symmetry in addition to unitarity and no pointlike fields. The old
S-matrix bootstrap programme admittedly did not get far, but now we perhaps can formulate
a similar but structurally richer problem as a perturbative approach to correlation functions of
the on-shell PFGs. Modular theory has given us a lot of insight and nobody nowadays would
try to cleanse the Einstein causality and locality concepts from the stage as was done in the
1960s. On the contrary, the local off-shell observable algebras would be at the centre of interest
and the avoidance of quantization would have entirely pragmatic reasons. In particular, the
sharpening of localization beyond wedges is done by algebraic intersections of wedge algebras
rather than by cut-off or test function manipulations on field coordinates.

The successful d = 1 + 1 bootstrap–formfactor programme of the previous section for
factorizing models yields S-matrices and formfactors which for models with a continuous
coupling are analytic around g = 0. A good illustration is the sine–Gordon theory [29].
The more local off-shell quantities, however (i.e. pointlike field operators or operators from
algebras belonging to bounded regions), are radically different since they involve virtual
particle polarization clouds which formally may be represented by infinite series in the on-shell
F s similar to the factorizing d = 1+1 case of the previous section. The analytic status of these
quantities (i.e. localized operators and their correlation functions) is presently not known; it
may well turn out that they are only Borel summable or (in the general non-factorizable case)
worse. The on-shell/off-shell dichotomy of the modular approach for the first time allows us to
determine more precisely whether the cause of the possible breakdown of analyticity at g = 0
are the polarization clouds.
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A solution to these problems, even if limited to some new kind of perturbation theory (a
perturbation theory of wedge algebras and their intersections) should also shed some light on
the question of how to handle theories involving higher-spin particles, which in the standard
off-shell causal perturbation theory lead to short-distance non-renormalizability. A very good
illustration of what I mean is the causal perturbation of massive spin = 1 vector mesons. Here
the coupling of covariant fields obtained by covariantizing the Wigner particle representation
theory in the sense of the previous section will not be renormalizable in the sense of short-
distance power counting. In the standard perturbative approach the indefinite metric ghosts
are used to lower the operator dimension of the interaction densities (free-field polynomials)
W(x), which as a result of the free vector meson dimension dimAµ = 2, are at least 5,
down to the value 4 permitted by the renormalization requirements in a d = 1 + 3 causal
perturbative approach [38]. Since the ghosts are removed at the end, the situation is akin to a
catalyser in chemistry: they do not appear in the original question and are absent in the final
result (without leaving any intrinsic trace behind). In theoretical physics the presence of such
catalysers should be understood as indicating that the theory needs to be analysed on a deeper
level of local quantum physics, i.e. further away from quantization and quasiclassics. Indeed,
in the present on-shell modular approach the short-distance operator reason for introducing
such ghosts would not be there and the remaining question is again whether the modular
programme allows for a perturbative analytically manageable formulation.

4. The AQFT framework

After our pedestrian presentation of the wedge algebra approach, it is time to be more systematic
and precise. For a non-interacting free system the conversion of the rather simple spatial nets
of real subspaces of the Wigner space of momentum space (m, s) wavefunctions into an
interaction-free net in Fock space produces the following three properties which continue to
hold in the presence of interactions. They have been explained in many papers [40] and in a
textbook [1], and my main task here is to adapt them to the problems of this paper.

(a) A net of local (C∗- or von Neumann) operator algebras indexed by classical spacetime
regions O

O → A(O).

Without loss of generality the regions O may be restricted to the Poincaré covariant
family of general double cones and the range of this map may be described in terms of
concrete operator algebras in Hilbert space for which the vacuum representation π0 may
be taken, i.e. A(O) ≡ π0(A(O)). The geometrical and physical coherence properties
as isotony, A(O1) ⊂ A(O2) for O1 ⊂ O2, and Einstein causality, A(O′) ⊂ A(O)′,
are then evident coherence requirements. Here we use the standard notation of AQFT:
the prime on a region denotes the causal disjoint and on the von Neumann algebra it
denotes the commutant within B(H), where H is the ambient Hilbert space (here the
representation space of the vacuum representation). Einstein causality can be interpreted
as an a priori knowledge about some withA(O) commensurable observables in the sense of
von Neumann. This causality property suggests the question whether complete knowledge
about commensurability A(O′) = A(O)′ is possible. It turns out that this is indeed the
generic behaviour of vacuum nets called Haag duality. The cases of violation of this
duality are of particular interest since they can be related to a very fundamental intrinsic
characterization of spontaneous symmetry breaking, thus vastly generalizing the Nambu–
Goldstone mechanism which was first found with Lagrangian quantization [1].
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(b) Poincaré covariance and spectral properties.

g ∈ P → αg automorphism

αg(A(O)) = A(O)

is unitarily implemented in the vacuum representation

U(g)AU ∗(g) = αg(A)

A ∈ A(O).

The unitaries for the translations have energy–momentum generators which fulfil the
relativistic spectrum (positive energy) condition, symbolically specU(a) ∈ V � (the closed
forward lightcone.)

(c) The phase-space structure of local quantum physics or the ‘nuclearity property’.

Remark 2. The precise formulation of the third property is somewhat involved and will be
presented after the following remarks on the first two structural properties. Since in the
formulation of the net one may, without loss of generality, work with von Neumann algebras
[1], the first question is what type of Murray–von Neumann–Connes–Haagerup classification
occurs. There is a very precise answer for wedges (which may be considered as double cones
at infinity). As a result of the existence of a one-sided translation into a wedge as well as
of the split property below, the wedge algebras A(W) turn out to be a hyperfinite factor of
type III1. This implies, in particular, that the algebra has properties which take it far away from
the structure of QM (factors of type I∞). Such algebras do not have pure states or minimal
projectors, rather all faithful states on such algebras are thermal, i.e. obey the KMS condition.
This makes them similar to states appearing in CST with bifurcated horizons as in Hawking–
Unruh situations, however, with modular flows instead of Killing flows (but more ‘quantum’,
i.e. without the classical geometric Killing vector aspects of horizons). The modular flow
near the boundary of, for example, double-cone regions become asymptotically geometric and
Killing-like.

The nuclearity requirement results from the idea that there should be a local quantum
physical counterpart of the phase-space properties of QM in a box. The famous finite number
of degrees of freedom law per unit cell of QM phase space results from limiting the discrete box
spectrum by a cut-off in energy. As first suggested by Haag and Swieca [1], the corresponding
LQP counterpart, based on the causally closed double-cone analogue of the quantization box
in Schrödinger QM, points in the direction of a ‘weakly’ infinite number; according to their
estimates this set of state vectors was compact in Hilbert space. Subsequent refinements of
techniques revealed that this set is slightly smaller, namely ‘nuclear’ [1], and exact calculations
with interaction-free theories demonstrated that the phase-space situation also cannot be better
than nuclear.

The best way to understand this issue is to follow the motivating footsteps of Haag and
Swieca. They, and many other physicists at that time (and as some contemporary philosophers
[37]), were attracted by the intriguing consequences of the so-called Reeh–Schlieder property
of QFT

P(O)% = H cyclicity of %

A ∈ P(O) A% = 0  ⇒ A = 0 i.e. % separating
(50)

which either holds for the polynomial algebras of fields (which are affiliated to the von Neumann
algebras which they generate) or for operator algebras A(O). The first property, namely the
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denseness of states created from the vacuum by operators from arbitrarily small localization
regions (e.g. a state describing ‘a particle behind the moon’† and a charge-compensating
antiparticle in some other far-away region can be approximated inside a laboratory of arbitrary
small size and duration) is totally unexpected from the global viewpoint of general QT. In the
algebraic formulation this can be shown to be dual to the second one (in the sense of passing to
the commutant), in which case the cyclicity passes to the separating property of % with respect
to A(O′). Referring to its use, the separating property is often called the field-state relation.
The mathematical terminology is to say that the pair (A(O), %) is ‘standard’. The large
enough commutant required by the latter property is guaranteed by causality (the existence
of a non-trivial causal disjoint O′) and thus shows that causality is again responsible for this
unexpected denseness property.

Of course the claim that somebody causally separated from us may provide us nevertheless
with a dense set of states is somewhat perplexing especially if one compares it with the
tensor factorization properties of good old Schrödinger QM with respect to an inside/outside
separation via a quantization box.

If the naive interpretation of cyclicity/separability in the Reeh–Schlieder theorem leaves
us with a feeling of science fiction (and for this reason as already mentioned has also justifiably
attracted attention in philosophical quarters), the challenge for a theoretical physicist is to find
an argument as to why, for all practical purposes, the situation nevertheless remains similar to
QM. This amounts to the fruitful question of which vectors among the dense set of state vectors
can be really produced with a controllable expenditure (of energy); a problem from which Haag
and Swieca started their investigation. In QM this question was not that interesting, since the
localization at a given time via support properties of wavefunctions leads to a tensor product
factorization of inside/outside so that the inside state vectors are evidently never dense in the
whole space and the ‘particle behind the moon paradox’ does not occur.

Later we will see that most of the very important physical and geometrical information is
encoded into features of dense domains, in fact the aforementioned modular theory explains
this deep relation between operator domains of the Tomita S and spacetime geometry. As
mentioned before the individuality of the various S-operators is only the difference in domains,
since all of them act as SA% = A∗%,A ∈ A(O)

For the case at hand the reconciliation of the paradoxical aspect [34] of the Reeh–Schlieder
theorem with common sense has led to the discovery of the physical relevance of localization
with respect to phase space in LQP, i.e. the understanding of the size of degrees of freedom in
the set: (notation H = ∫

E dPE)

PEA(O)% is compact (51)

PEA(O)% or e−βHA(O)% is nuclear. (52)

The first property was introduced by Haag and Swieca (as reviewed in [1]), whereas the second
more refined statement (and similar nuclearity statements involving modular operators of local
regions instead of the global Hamiltonian) which is saturated by QFT (i.e. cannot be improved)
and is easier to use, is a later result of Buchholz and Wichmann [39]. It should be emphasized
that the LQP degrees of freedom counting of Haag–Swieca, which gives an infinite but still
compact (and even nuclear) set of phase-space localized states, is different from the QM
finiteness of degrees of freedom per phase used in some contemporary entropy calculations.

The map A(O) → e−βHA(O)% is only nuclear if the mass spectrum of LQP is not too
accumulative in finite mass intervals; in particular, infinite towers of equal-mass particles

† This weird aspect should not be held against QFT, but rather be taken as indicating that localization by a piece of
hardware in a laboratory is also limited by an arbitrary large but finite energy, i.e. is a ‘phase-space localization’ (see
the subsequent discussion). In QM one obtains genuine localized subspaces without energy limitations.
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are excluded (which then would cause the strange appearance of a maximal ‘Hagedorn’
temperature). The nuclearity ensures that a QFT, which was given in terms of its vacuum
representation, also exists in a thermal state. An associated nuclearity index turns out to be
the counterpart of the quantum mechanical Gibbs partition function [1, 40] and behaves in an
entirely analogous way.

The peculiarities of the above degrees-of-freedom counting are very much related to one
of the oldest ‘exotic’ and at the same time characteristic aspects of QFT, namely vacuum
polarization. As first observed by Heisenberg, the partial charge

QV =
∫
V

j0(x) d3x = ∞ (53)

diverges as a result of uncontrolled vacuum particle/antiparticle fluctuations near the boundary.
For the free-field current it is easy to see that a better definition involving test functions, which
smoothens the behaviour near the boundary and takes into account the fact that the current
is a four-dimensional distribution which has no restriction to equal times, leads to a finite
expression.

QR =
∫

j0(x)f (x0)g
( x

R

)
dsx (54)

where f and g are test functions of compact support with
∫
f (x0) dx0 = 1 and g("x) = 1 for

|"x| < 1 and g("x) = 0 |"x| > 1 + δ. The vectors QR% only converge weakly for R→∞ on a
dense domain. Their norms, however, diverge as [32]

(QR%,QR%) � constant× Rs−1 (55)

∼ area.

The surface-layer character of this vacuum polarization is reflected in this area behaviour
together with the original divergence (53) for fixed R and δ→ 0.

The algebraic counterpart is the so-called ‘split property’, namely the statement [1] that if
one leaves between say the double-cone (the inside of a ‘relativistic box’) observable algebra
A(O) and its causal disjoint (its relativistic outside) A(O′) a ‘collar’ (geometrical picture of
the relative commutant) O′

1 ∩O, i.e.

A(O) ⊂ A(O1) O # O1 properly (56)

then it is possible to construct in a canonical way a type I tensor factor N which extends in a
‘fuzzy’ manner into the collar A(O)′∩A(O1), i.e. A(O) ⊂ N ⊂ A(O1). With respect to N the
Hilbert space factorizes, i.e. as in QM; there are states with no fluctuations (or no entanglement)
for the ‘smoothed’ operators in N . Whereas the original vacuum will be entangled from the box
point of view, there also exists a disentangled product vacuum on N . The algebraic analogue
of a smoothing of the boundary by a test function is the construction of a factorization of the
vacuum with respect to a suitably constructed type I factor algebra which uses the above collar
extension of A(O). It turns out that there is a canonical, i.e. mathematically distinguished
factorization, which lends itself to define a natural ‘localizing map’ < and which has given
valuable insight into an intrinsic LQP version of Noether’s theorem [1], i.e. one which does
not rely on quantizing classical Noether currents. It is this ‘split inclusion’ which allows us to
bring back the familiar structure of pure states, tensor product factorization, entanglement and
all the other properties at the heart of standard quantum theory and the measurement process.
However, despite all the efforts to return to structures known from QM, the original vacuum
retains its thermal (entanglement) properties with respect to all localized algebras, even with
respect to the ‘fuzzy’ localized N .
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Let us collect in the following some useful mathematical definitions and formulae for
‘standard split inclusions’ [41].

Definition 3. An inclusion � = (A,B, %) of factors is called a standard split if the collar
A′ ∩ B as well as A,B together with % are standard in the previous sense, and if in addition
it is possible to place a type I∞ factor N between A and B.

In this situation there exists a canonical isomorphism of A ∨ B′ to the tensor product
A ⊗̄B′ which is implemented by a unitary U(�) : H� → H1 ⊗̄H2 (the ‘localizing map’)
with

U(�)(AB ′)U ∗(�) = A ⊗̄B ′ (57)

A ∈ A B ′ ∈ B′.
This map permits us to define a canonical intermediate type I factor N� (which may differ
from N in the definition)

N� := U ∗(�)(B(H1)⊗ 1lU)(�) ⊂ B ⊂ B(H�). (58)

It is possible to give an explicit formula for this canonical intermediate algebra in terms of the
modular conjugation J = U ∗(�)JA ⊗ JBU(�) of the collar algebra (A′ ∩ B, %) [41]

N� = A ∨ JAJ = B ∧ JBJ. (59)

The tensor product representation gives the following equivalent tensor product
representation formulae for the various algebras:

A ∼ A⊗ 1l

B′ ∼ 1l⊗ B′

N� ∼ B(H�)⊗ 1l.

(60)

As explained in [41], the uniqueness of U(�) and N� is achieved with the help of the ‘natural
cones’ P%(A ∨ B′) and P%⊗%(A ⊗ B′). These are cones in Hilbert space whose position in
H� together with their facial subcone structures pre-empt the full algebra structure on a spatial
level. The corresponding marvellous theorem of Connes [46] goes far beyond the previously
mentioned state vector/field relation.

Returning to our physical problem, we have succeeded in finding the right analogue of the
QM box. In contrast to the causally closed local type III algebras with their sharp lightcone
boundaries (‘quantum horizons’), the ‘fuzzy box’ type I factorN� permits all the structures we
know from QM: pure states, inside/outside tensor factorization, (dis)entanglement, etc with
one exception: the vacuum is highly entangled in the tensor product description; the modular
group of the state ω|A⊗̄B′ represented in the tensor product natural cone P%⊗%(A⊗̄B′) is not
the tensor product of the modular groups of A and B′, whereas the modular conjugation J

acts on the tensor product cone as JA⊗̄JB (since the restriction ω|A⊗̄B′ is faithful). Note also
that the restriction of the product state ω ⊗ ω to B or B′ is not faithful, respectively, cyclic on
the corresponding vectors and therefore the application of those algebras to the representative
vectors ηω⊗ω yields non-trivial projectors (e.g. P� = U ∗(�)B(H1)⊗̄1U(�)).

Since the fuzzy box algebra N� is of quantum mechanical type I, we are allowed to use
the usual trace formalism based on the density matrix description, i.e. the vacuum state can be
written as a density matrix ρ% on N� which leads to a well defined von Neumann entropy

(%,A%) = tr ρ�A A ∈ A (61)

S(ρ�) = − tr ρ� log ρ� (62)
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but this is not sufficient to determine ρ�, which is needed for the von Neumann entropy of the
fuzzy box S(ρ�). If we were able to compute the unitary representative 3it

N�
of the modular

group of the pair (N�,%) then we would also know ρ� since the modular operator of a type I
factor is known to be related to an unnormalized density matrix ρ̌� with ρ� = 1

tr ρ̌�
ρ̌� through

the tensor product formula on H1⊗̄H2

3 = ρ̌�⊗̄ρ̌−1
� . (63)

Actually, there are several intuitively equivalent definitions of localization entropy [47].
Among those the most convenient one seems to be the relative entropy of the vacuum ω

with respect to the split vacuum ω×ω. The relative entropy of a von Neumann algebra M of
one faithful state ω1 with respect to ω2 uses the relative modular operator [1] 3ω1,ω2 ,

S(ω1|ω2)M = −
〈
log3ω1,ω2

〉
. (64)

Kosaki [48] was able to convert this (in the most general setting) into a variational formula

S(ω1|ω2)M = sup

∫ 1

0

[
ω(1)

1 + t
− ω1(y

∗(t)y(t))− 1

t
ω2(x

∗(t)x(t))
dt

t

]

x(t) = 1− y(t), x(t) ∈ M
(65)

where in our case ω1 = ω × ω, ω2 = ω, M = A ∨ B′.
Despite the very clear conceptual setting of this split entropy, it is difficult to obtain good

estimates for this entropy, not to mention exact calculations. As for the above partial charges
(55) one expects a surface behaviour, the quantum version of the Bekenstein–Hawking area
law. An existing estimate shows that its increase for, for example, double cones is weaker than
the spatial volume [47]. The most accessible situation for entropy calculations seems to be
conformal QFT.

It seems that for double cones in conformal theories one can use the geometric aspects
of the situation and perform an explicit calculation. This still needs to be carried out, but an
outline of the strategy can be found in [7].

Ideas about localization entropy are quite inaccessible in perturbation theory because they
require an intrinsic description in terms of a net of algebras, whereas for perturbation theory
no description without the use of field coordinatizations is known. This has led to speculative
remarks in the literature claiming the necessity of new degrees of freedom for the understanding
of the area law.

5. Modular inclusions and intersections, holography

One of the oldest alternative proposals for canonical (equal-time) quantizations is the so-
called light ray or lightfront (or p → ∞ frame) quantization. The trouble with it is that it
apparently inherits some of the short-distance problems from the canonical quantization. The
latter is known to only makes sense for super-renormalizable interactions but not for strictly
renormalizable ones, which lead to infinite multiplicative renormalizations. Let us ignore this
for a moment and look at some additional problems of lightcone quantization which canonical
equal-time quantization does not have. This is the apparent loss of the connection with local
QFT; in fact, in none of the papers on lightcone quantization is it spelled out how to return to a
local QFT. The problem of lightfront-restricted free fields was studied rigorously in [42], but
in the interacting case the reconstruction of the local theory from that on the lightcone (which
may be called the holographic reconstruction) is a serious problem indeed.
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Our modular inclusion techniques in section 2 suggested that for massive (and massless
for d 
= 1 + 1) theories the wedge algebra and the chiral lightfront algebra are identical

A(W) = A(R>). (66)

Since this is a consistent property which is fulfilled by all known quantum field-theoretic
models, we will be focus our interests on theories which obey this ‘characteristic shadow’
property and leave open the question of whether this property is a consequence of the
standard physical requirements of AQFT. We already mentioned in the same section that the
chiral algebra really should be thought of as the ‘transversally unresolved lightfront algebra’.
However, since the use of a lightfront notation like A(Rd−1

> ) could suggest the wrong idea that
one deals with a full lightfront net, we prefer the light ray notation since it does not count any
localization-wise unresolved dimensions. If we just refer to the global algebras and not to their
local (sub)net structure, then all three objects are equal and there could be no confusion.

The rigorous construction of a chiral net for A(R>) indicated in the section 3 will now be
presented in more detail within its natural setting of modular inclusions [35].

One first defines an abstract modular inclusion in the setting of von Neumann algebras.
There are several types of inclusions which have received mathematical attention†. An
inclusion of two factors N ⊂ M is called (+ half-sided) modular if the modular group 3it

M
for t < 0 transforms N into itself (compression of N )

A d3it
MN ⊂ N . (67)

We assume that ∪tA d3it
MN is dense in M (or that ∩t3

it
MN =C·1). This means, in

particular, that the two modular groups 3it
M and 3it

N generate a two-parametric group of
(translations, dilations) in which the translations have positive energy [13]. Let us now look
at the relative commutant as done, for example, in the appendix of [43].

Let (N ⊂ M, %) be modular with non-trivial relative commutant. Then look at the
subspace generated by relative commutant Hred ≡ (N ′ ∩M)% ⊂ H . The modular groups to
N and M leave this subspace invariant: 3it

M, t < 0 maps N ′ ∩M into itself by the inclusion
being modular. Look at the orthogonal complement ofHred inH . This orthogonal complement
is mapped into itself by 3it

M for positive t . Let ψ be in that subspace, then〈
ψ,3it

M(N ′ ∩M)%
〉 = 0 for t > 0. (68)

Analyticity in t then gives the vanishing for all t .
Due to Takesaki’s theorem [3], we can restrict M to Hred using a conditional expectation

to this subspace defined in terms of the projector P onto Hred . Then

E(N ′ ∩M) ⊂ M|(N ′∩M)% = E(M) (69)

E(·) = P · P (70)

is a modular inclusion on the subspaceHred . N also restricts to that subspace and this restriction
is obviously in the relative commutant of E(N ′ ∩M) ⊂E(M). Moreover, using arguments as
above it is easy to see that the restriction is cyclic with respect to% on this subspace. Therefore,
we arrive at a reduced modular ‘standard inclusion’

(E(N ) ⊂ E(M),%). (71)

Standard modular inclusions are known to be isomorphic to chiral conformal field theories
[35].

† In addition to the split inclusion used in the previous section, there are the famous Jones inclusions, whose
characteristic property is the existence of conditional expectations. Their domain in particle physics is in the area of
charge fusion and internal symmetry.
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This theorem and its extension to modular intersections leads to a wealth of physical
applications in QFT, in particular, in connection with ‘hidden symmetries’ symmetries which
are of purely modular origin and have no interpretation in terms of quantized Noether currents
[23, 43]. The modular techniques unravel new structures which are not visible in terms of field
coordinatizations. Holography and problems of degrees of freedom counting (phase space in
LQP) as well as the issue of localization entropy are other examples.

Let us briefly return to applications for d = 1 + 1 massive theories. It is clear that in this
case we should use the two modular inclusions which are obtained by sliding the (right-hand)
wedge into itself along the upper/lower light ray horizon. Hence we chose M = A(W) and
N = A(Wa+) or N = A(Wa−) where Wa± denote the two upper/lower light like translated
wedges Wa± ⊂ W . As explained in section 2 following [30] and mentioned above, we do not
expect the appearance of a non-trivial subspace (i.e. we expect P = 1) in the action of the
relative commutants onto the vacuum

A(I (0, a±)) ≡ A(Wa±)
′ ∩A(W)

A(I (0, a±)% = H
(72)

where the notation indicates that the localization of A(I (0, a±)) is thought of as the piece of
the upper/lower light ray interval between the origin and the endpoint a±.

From the standardness of the inclusion one obtains according to the previous discussion
an associated conformal net on the line, with the following formula for the chiral conformal
algebra on the half-line:

A±(R>) ≡
⋃
t�0

A d3it
W (A(I (0, a±))) ⊆ A(W). (73)

We expect the equality sign to hold

A±(R>) = A(W) (74)

but our argument was tied to the existence of PFGs since as a result of their mass-shell structure

F(f̂ ) =
∫

Z(θ)f (θ) dθ

= Fres(f̂res) (75)

where the notation ‘res’ indicates the corresponding generators in light ray theory which are
identical in rapidity space and only differ in their x-space appearance. This is a significant
strengthening of the cyclicity property A±(R>)% = A(W)% for the characteristic data on one
light ray. The argument is word for word the same in higher spacetime dimensions, since the
appearance of transversal components (which have no influence on the localization) in addition
to θ do not modify the argument. One would think that the inference of PFG generators can
even be disposed of and the equality should follow from the standard causal shadow property
of QFT in the form

A(W) = A(R(α)
> ) (76)

where R(α)
> is a spacelike positive half-line with inclination α with respect to the x-axis. The

idea is that if this relation remained continuous for R(α)
> approaching the light ray (α = 45◦)

would then lead to the desired equality. We believe that the relation (76) for massive theories,
which will be called the ‘characteristic shadow property’, is a general consequence of the
standard causal shadow property (the identity of A(O) = A(O′′), where O′′ is the causal
completion of the convex spacelike region O) in any spacetime dimension.



New concepts in particle physics from solution of an old problem 5259

Theories with the characteristic shadow property are the objects of light ray folklore.
The present conceptually more concise approach explains why the light ray quantization in
the presence of interactions is basically non-local which significantly restricts its unqualified
physical use. The reason is that although the half-line algebra is equal to the wedge algebra
(since all rays of forward lightcone propagation which pass through the upper/lower half light
ray R> have passed or will pass through W), the locality on the light ray cannot be propagated
into the wedge (the strips inside the wedge subtended from an interval I on the light ray by the
action of the opposite light ray translation are for massive theories not outside the propagation
region of the complement of I ). Only for the half-line itself does one obtain a two-dimensional
shadow region, namely the wedge region. If one uses both lightcones then it is possible to
reconstruct a causal d = 1+1 net by intersections. This construction uses the two-dimensional
translation group on the wedge and the ensuing double-cone relative commutants. Note that in
order to achieve this with parity-reflected half-lines of light rays, one needs the relative position
of the two half-line light ray algebras relative to each other in the common space H . In fact
one shifted right light ray chiral algebra together with its parity-reflected image is equal to
the union of two opposite spacelike separated wedge algebras. The reflected light ray algebra
may also be replaced by the algebra on the left-hand extension of the original light ray since
both create the same left wedge algebra. However, the natural net structure of that algebra
is very non-local with respect to that of the parity-reflected one. This prevents its use in the
construction of the two-dimensional net from shifts and geometric intersections on one light
ray. An algebra localized in an interval on one light ray corresponds to a completely spread
out algebra on the other ray. The modular group of each light ray interval is geometric. This
agrees with the qualitative behaviour one expects for the modular group of the double cone in
a massive theory [23] near the causal horizon. Note that the relative non-locality of the chiral
conformal theories is also necessary in order to be consistent with a massive situation. The
chiral conformal field theory contains the standard light ray translation with a gapless spectrum.
However, this spectrum is not the physical one since in that chiral theory there exists yet another
non-locally acting translation and it is the spectrum of the product of the two generators P+P−
which gives the physical mass. Hence chiral conformal theories constitute a multipurpose tool
in LQP. This is why they can serve as ‘holographic’ pieces for the construction of massive
d = 1 + 1 theories. So with just one light ray and two translations, one acting locally and the
other non-locally, one ray one can already reconstruct the full d = 1 + 1 net. Later we will see
that this is enough to understand the localization entropy which turns out to have the surface
behaviour first observed in the context of classical localization behind black hole horizons by
Bekenstein.

Because of the transversal extension, the holography in terms of one-dimensional chiral
conformal theories is more complicated for higher dimensions. There one needs a family
of chiral conformal theories which is obtained from ‘modular intersections’. Rather than
associating the chiral conformal theory with a light ray, it is more appropriate to associate it
with the transverse space of the wedge which contains the light ray, i.e. with the lightfront.
A family of lightfront algebras is obtained by applying L-boosts to the standard wedge W ,
which tilts W around one of its defining light rays, so that the transversal degeneracy of the
modular inclusion is partially destroyed (in d = 1 + 2 it would be completely destroyed). In
this way one obtains a fan-like ordered family of wedges corresponding to a family of chiral
conformal theories whose relative position within the original Hilbert space contains all the
information necessary in order to reconstruct the original (massive) theory. A detailed and
rigorous account of this construction will be given in a future paper. Here we will only mention
some analogies to the above light ray situation. The process of tilting by applying a family
of boost transformations which leave the common light ray invariant is described by unitary
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transformations of one chiral conformal theory into another. Each single one, according to the
higher-dimensional characteristic shadow property, is equal to a wedge algebra. Knowing the
position of a finite number of such chiral conformal theories with respect to each other (the
number increases with increasing spacetime dimensions), determines the relative position of a
finite number of wedge algebras (� chiral conformal QFTs) which according to the previous
remarks is sufficient to reconstruct the original net (the blow-up property in [43]). As previously
mentioned, in the d = 1 + 1 case the second light ray can be thought of as obtained from the
first one by a unitary parity reflection (assuming that the theory is parity invariant). All the
finitely many chiral conformal field theories are unitarily equivalent (either by parity or by
L-boosts); the important physical information is contained in their relative position within the
same Hilbert space. The terminology ‘scanning by a finite family of chiral conformal theories’
is perhaps more appropriate for this construction of higher-dimensional theories [43, 50].

It has been shown elsewhere [50] that the modular inclusion for two wedges gives
rise to two reflected eight-parametric subgroups of the 10-parametric Poincaré group which
contain a two-parametric transversal Galilean subgroup of the type found by formal lightfront
quantization arguments [49]. All of these considerations show the primordial role of the chiral
conformal QFT as a building block for the higher-dimensional QFTs.

There is another much more special kind of holography in which an isomorphism of a
massive QFT in d + 1 dimensions to a conformal d-dimensional theory is the focus of interest.
This isomorphism appears in Rehren’s solution [19] of Maldacena’s conjecture about the
existence of a holographic relation of quantum matter in a (d + 1)-dimensional anti- de Sitter
spacetime with that in a d-dimensional conformal QFT. This type of holography has not been
observed outside the anti-de Sitter spacetime and since it is an isomorphism to a conformal
theory, the degrees of freedom are not really reduced in the sense of ’t Hooft [44], as was
the case in the previous holography via light ray reduction. The Maldacena–Witten (M–W)
holography is apparently of importance within the development of string theory, in fact, its
protagonists believe that it contains information about a possible message about the quantum
gravity of string theory. Within the present AQFT setting its main interest is that it requires
the field-coordinatization-free point of view in its strongest form; whereas in most problems
of QFT there exist appropriate field coordinatizations which often facilitate calculations, the
M–W isomorphism defined in rigorous terms by Rehren is not pointlike and has no description
in terms of fields outside its algebraic version. In contradistinction to the light ray holography
which happens at the causality horizon (lightfront boundary) of modular localization (or its
classical Killing counterpart in the case of black holes) the AdS holography takes place at the
boundary at infinity.

A very simple presentation in the spirit of Rehren’s approach which takes into account the
covering of the relevant spaces can be found in [51].

6. Comparison with string theory

As mentioned in the introduction, historically string theory originated from the attempt to
understand and implement the issue of crossing symmetry of the S-matrix. Without the
intervention of QFT it was difficult to combine unitarity and crossing symmetry into a
manageable formalism. It came as somewhat of a surprise that by assuming an additional
stronger form of crossing called ‘duality’ one actually could obtain the dual-model formalism.
Duality was an idea of entirely phenomenological origin which consisted in the hypothesis
that crossing can already hold if one only restricts ones attention to (Reggeized) one-particle
states (‘particle democracy’). There was no theoretical support from QFT, nevertheless
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the very appealing form of duality by Veneziano led eventually to string theory. However,
whereas the content of QFT can be separated from the perturbative formalism and cast into
a totally intrinsic form which is strongly related to its underlying principles, string theory
leaves a lot to be desired on conceptual aspects and remained a collection of prescriptions.
In particular, string theorists have not been able to successfully address the issue of locality
of operators and localization of states which are absolutely crucial properties on which any
particle physics theory stands and falls and which are even indispensable for the physical
interpretation of its formalism [34]. The formal basis of string theory is a kind of momentum
space ‘engineering’ rather than a conceptual spacetime analysis. The latter remained within
the realm of quasiclassical physics using geometrical pictures with some fluctuation caused
fuzziness, i.e. pictures which in the setting of quantum theory fall behind Heisenberg’s dictum
that positions and momenta are not properties of the electron but are characteristics of the
events involving interactions with a measurement apparatus which causes the factualization
of potentialities. Related to this is the fact that the word scattering theory has an entirely
different meaning in both areas. Whereas in QFT it is an asymptotic relation to free fields for
whose derivation spacelike locality is absolutely essential, in string theory its use in the sense
of the 0/∞ behaviour of the analytically continued source space conformal field theory in the
complex plane has nothing to do with any standard scattering concept of physical particles.
Whereas all important ideas in QFT have been tested outside quasiclassical or perturbative
settings at least in d = 1 + 1 interacting theories, this is not the case in string theory. For
example, the Klein–Kaluza mechanism for the conversion of spacetime into inner symmetry
which is a (semi)classical idea has never been tested in a full QFT. Since the physical origin of
internal symmetries is closely related to particle/field statistics†, there is some subtle problem
with the Klein–Kaluza mechanism in QFT away from the quasiclassical pictures of functional
integrals.

Another problematic point is the intrinsic meaning of ‘stringiness’ in the form of an
infinite tower of particles with an oscillator-like mass spectrum. As long as mass spectra do
not accumulate (by increase of multiplicities) too densely, they are compatible with the phase-
space structure of QFT and lead to reasonable thermal behaviour, i.e. the pathological situation
of a finite Hagedorn temperature can presumably also be avoided in string theory. However, it
is not known to me how one can distinguish an infinite collection of resonances, i.e. poles in the
second Riemann sheet (since presumably in string theory most of the particles in the tower are
unstable through higher-order (higher-generi) interactions as would be the case in Feynman
theory). I do not know of any theorem in QFT which forbids such a resonance situation and
therefore I do not understand the meaning of stringiness. Extended objects can also exist in
QFT built on perfect local observables; in fact, the superselection theory even demands in some
cases the existence of non-compactly localized objects which intertwine between inequivalent
representations of perfectly local observable algebras, examples are the carriers of braid group
statistics in d = 1+2 dimensions are necessarily extended along semi-infinite spacelike strings.
So it is very questionable whether there exists an intrinsic meaning of stringiness.

The relation of string theory with the wedge-localization approach to QFT presented in
this paper goes only via the common historical root of the S-matrix theory of the 1960s and
basically consists in the claim that both theories are ultraviolet finite. In fact, the on-shell nature
of wedge algebras as exemplified by the modular wedge-localization equation (35) provides
a field-theoretic link for the S-matrix bootstrap and transports the ultraviolet finiteness of the

† The analysis of statistics from first principles leads rather directly to parastatistics in the sense of [1]. It is one of
the great achievements of particle physics in the 1980s to show that this may always be converted into fermion/boson
statistics + internal group symmetry where the latter can be computed from the structure of the structure of the causal
observables.
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latter into QFT. Although this finiteness is shared with string theory, the cause of it is very
different. Whereas in string theory this finiteness results from the extension† of a string as an
indecomposable state of matter, the modular approach to QFT is ultraviolet-finite in a much
more radical and at the same time much more conservative way. The radical aspect is that by
not using the inevitably lightcone singular-field coordinatizations in the actual construction but
rather a net of algebras, the objects to which the bad short-distance behaviour and the ultraviolet
divergences are attached have disappeared from the scene. They may be constructed at the
end as local generators of the already constructed spacetime-indexed nets of algebras, but
there they can no longer do any harm. The conservative aspect is that by taking this approach
which requires a radically changed formalism, one remains in total harmony with the causality,
spectral, and degrees of freedom principles which underlie QFT. The short-distance behaviour
of the field approach is substituted by the non-triviality of intersections of algebras. This
approach has already been tested in the bootstrap-formfactor constructions of d = 1 + 1
factorizable models. In d = 1 + 3 one expects that its perturbative version reproduces the
renormalizable field theories and, in addition, reveals whether the frontiers of the standard
approach (renormalizable/non-renormalizable) which appear in a purely formal way (power
counting in auxiliary objects) are really the intrinsic formalism-independent frontiers defined
by the physical principles of QFT. Massive gauge theories analysed from the slightly physical
point of view [38] of self-interacting massive vector mesons nourish the suspicion that the
intrinsic frontiers may be wider than those set by the standard perturbative power counting for
interaction polynomials.

Both the modular wedge localization approach as well as string theory attribute a basic
significance to chiral conformal theory, and both know the notion of holography. However,
the use and the physical interpretation of these concepts is quite different. Whereas in AQFT
chiral conformal theories are the building blocks of holographic images of higher-dimensional
theories and therefore are positioned in the same Minkowski space, string theory places the
chiral conformal data into an auxiliary source space and identifies the physical space as the
target space of the fields in which they take their values. Related to this is, in fact, the
notorious difficulty of defining a string field theory, a problem which is presumably related to
the difficulty in separating the intrinsic conceptual content of string theory from its procedural
prescriptions.

On the other hand, the modular approach has all the hallmarks of a conceptually based
intrinsic formulation of local particle physics which makes it a candidate for an extension
into the realm of interactions of the Wigner’s representation theory of free particles which
was the first totally intrinsic (independent of quantization) approach to relativistic quantum
theory.

Note added in proof. Meanwhile there has been progress on the issue of particle versus field structure in conformal
theories and on a time-like braid group structure behind the spectrum of anomalous scale dimensions [52].

Acknowledgments

A correspondence with K-H Rehren, and discussions with J Roberts and R Longo during a short
visit of Rome university led to various improvements of the paper. I am particularly indebted
to J Roberts for the invitation which made these discussions possible. Finally, I would like
to thank my colleagues at the FU Andreas Fring, Michael Karowski, Hradch Babujian and
Robert Schrader for some good questions and constructive suggestions.

† This means that the string of string theory is not an extended object in an otherwise local theory such as, for example,
a Mandelstam string in gauge theory.



New concepts in particle physics from solution of an old problem 5263

Appendix A. Some facts about modular theory

Definition 4. A von Neumann algebra A (weakly closed operator sub-algebra of the full
algebra B(H) on a Hilbert space H) is in ‘standard position’ with respect to a vector % ∈ H ,
denoted as (A, %), if % is a cyclic (A% = H) and separating (A% = 0, A ∈ A iff A = 0)
vector for A. In this situation Tomita defines the following involutive antilinear but unbounded
operator (the Tomita involution S):

SA% := A∗% (A1)

where the star operation is the Hermitian conjugate in operator algebras. Its closeability
property (as physicists we will use the same notation for the closure) is the prerequisite for the
polar decomposition

S = J31/2 (A2)

where the angular part J (the modular involution) is antiunitary with J 2 = 1 and 3 is
unbounded positive and therefore leads to a unitary group 3it .

Theorem 5 (Tomita (1965), with significant improvements from Takesaki). The modular
involution maps A onto its von Neumann commutant A′ in H :

A dJ ·A = A′. (A3)

The unitary 3it defines a ‘modular’ automorphism group by

A d3it ·A = A (A4)

(in analogy to a dynamical law for the algebra).

More details and references to the proof can be found in [1]. Actually, physicists have
independently discovered some important properties of modular theory which later were
incorporated by mathematicians into the Tomita–Takesaki theory. In fact, Haag et al [1]
observed that the KMS property which Kubo, Martin and Schwinger just used a computational
trick in order to avoid the calculation of traces in quantum statistical mechanics took on a
fundamental conceptual role if one works directly in the thermodynamic limit of infinitely
extended systems. A closely related independent discovery in their pursuit of physical-
conceptual problems in quantum statistical mechanics which arise if one works directly in
the thermodynamic limit [1]. As is well known, the Gibbs representation formula

〈AV 〉(V )β = tr e−βHV AV

tr e−βHV

AV ∈ algebra of box-quantization
(A5)

ceases to make sense† for infinite volume open systems and the algebra changes its Murray–
von Neumann type. Whereas in the quantization box it was type I, the open system algebra
becomes type III1 and the Gibbs formula passes to the KMS condition which is a cyclic relation
for thermal correlation functions [1]. In the 1970s Haag and collaborators were able to derive
the KMS condition directly from stability properties under local deformations and Pusz and
Woronowicz found a direct link to the second law of thermodynamics [1]. These profound
results were recently used for the derivation of thermal properties of quantum matter in an
anti-de Sitter spacetime [4].

† In a box the bounded-below Hamiltonian acquires a discrete spectrum and e−βH is of trace class (%β = e−
1
2 βH is

Hilbert–Schmidt.), a property which is lost in the infinite-volume limit.
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The relation of modular theory with the Einstein causality of observables and locality
of fields in QFT was made around 1975 in a series of papers by Bisognano and Wichmann
(referred to in [1]). Specializing to wedge algebras A(W) generated by Wightman fields, they
proved the following theorem.

Theorem 6. The Tomita modular theory for the wedge algebra and the vacuum state vector
(A(W),%) yields the following physical identifications:

3it = U(�W(2πt)) J = T CP · U(Rx(π)). (A6)

Here �W(χ) denotes the boost (χ is the x-space rapidity) which leaves the wedge W

invariant. If we choose the standard t–x wedge, then the rotation which aligns the TCP with
Tomita’s J is a rotation around the x-axis by an angle π .

Now I come to my own contributions which are of a more recent vintage [21]. They result
from the desire to invert the Bisognano–Wichmann theorem, i.e. to use Tomita’s modular
theory for the actual construction (and classification) of (a net of) wedge algebras belonging
to interacting theories with the final goal to intersect wedge algebras in order to obtain a net
of compactly localized double-cone algebras. For the arguments which show that the particle
physics properties, in particular the scattering matrix and formfactors of distinguished fields
(conserved currents) can be abstracted from the net observables, I refer to [1, 36, 40]. If desired,
the nets can also be coordinatized by more traditional pointlike fields and a rigorous derivation
for chiral nets can be found in [33]. For the derivation of LSZ scattering theory one makes the
assumption of the existence of a mass gap. With this one immediately realizes that, whereas
the connected part of the Poincaré group is the same as that of the free incoming theory, the
disconnected part containing time reversals, in particular the modular involution J for the
wedge carry the full interaction

3it
W = 3it

W,in =: e−iKt JW = SscJW,in. (A7)

Here JW,in refers to the Tomita involution (or TCP reflection) of the wedge algebra generated
by the incoming free field. If the theory is not asymptotically complete (i.e. the vacuum is
not cyclic with respect to the incoming fields) these relations have to be modified, but here
we discard such pathologies for which no physical illustration exists. Since we do not want
to tamper with historical notation, we have added a subscript to the S-matrix Ssc in order to
distinguish it where necessary from Tomita’s S. The modular ‘Hamiltonian’ K defined in the
first equation (the boost generator= Hamiltonian of a particular uniformly accelerated Unruh
observer) always has a symmetric instead of a one-sided spectrum.

The last relation (A7) is nothing but the TCP transformation law of the S-matrix rewritten
in terms of modular objects associated with the wedge algebra. The above role of the S-matrix
as a kind of relative modular invariant of the wedge algebra (relative to the free one) is totally
characteristic for local quantum physics and has no counterpart in quantum mechanics.

Appendix B. Absence of PFGs for sub-wedge regions in theories with interactions

Theorem 7. In interacting theories there exist no PFGs localized in subwedge regions. The
wedge region is the smallest spacetime region for which PFGs in the presence of interactions
are possible.

For the proof† let us first assume that the spacetime localization region O of the would be
PFGs is compact, e.g. a double cone. Let φ be an operator which is affiliated with A(O) which

† The proof is similar to that of the Jost–Schroer theorem in [5] and to that in [18].
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means that on the domain of definition it commutes with all operators from the commutant
A′(O). The PFG property of φ means (φ# denotes either φ or φ∗)

φ#(x)% = one-particle vector

φ#(x) = U(x)φ#U ∗(x)
(B1)

without any admixture of additional polarization contribution from higher particle
configurations. As a result the vector satisfies the free-field equation in x. On the other
hand, we have that

[
φ#(x), φ#(y)

] = 0 for sufficiently large spacelike separations. Let us now
look at the matrix elements〈

ψ2

∣∣φ#(x)
∣∣ψ1

〉
(B2)

with sayψ2 ∈ domain(φ#) and chooseψ1 from the dense set of state vectors which are localized
in some region spacelike relative to loc(φ#(x)). This is done by applying spacelike separated
operators onto the vacuum |ψ1〉 = A |0〉. Since φ#(x) commutes with such operators we obtain〈

ψ2

∣∣φ#(x)
∣∣ψ1

〉 = 〈
ψ2

∣∣φ#(x)A
∣∣%〉 = 〈

ψ2

∣∣Aφ#(x)
∣∣%〉

(B3)

i.e. φ#(x) fulfils the free-field equation on a dense set of states in its domain. Since all affiliated
operators are closeable, the operator itself fulfils the free-field equation. If we succeed to prove
in addition that the commutator with itself is a c-number[

φ∗(x), φ(y)
] = c(x − y)1l (B4)

then we would have achieved our goal since it would follow that φ#(x) is a linear expression
in terms of the particle creation and annihilation operator which contradicts the presence of
an interaction. However, this last step follows almost literally the argument in the derivation
of the Jost–Schroer theorem [5], the fact that the present φ has no well defined L-covariance
does not matter. In the first step one shows that[

φ∗(x), φ(y)
] |%〉 = c(x − y) |%〉 (B5)

which requires the creation× creation contribution to vanish, i.e.
[
φ∗(+)(x), φ(+)(y)

] |%〉 = 0.
For this one uses causality and the separate analyticity in x and y, which follows from the
forward mass-shell support property. The generalization from a relation on the vacuum to a
relation on a dense set of states is as before.
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